Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Machine learning (ML) models rely heavily on consistent and accurate performance metrics to evaluate and compare their effectiveness. However, existing libraries often suffer from fragmentation, inconsistent implementations, and insufficient data validation protocols, leading to unreliable results. Existing libraries have often been developed independently and without adherence to a unified standard, particularly concerning the specific tasks they aim to support. As a result, each library tends to adopt its conventions for metric computation, input/output formatting, error handling, and data validation protocols. This lack of standardization leads to both implementation differences (ID) and reporting differences (RD), making it difficult to compare results across frameworks or ensure reliable evaluations. To address these issues, we introduce AllMetrics, an open-source unified Python library designed to standardize metric evaluation across diverse ML tasks, including regression, classification, clustering, segmentation, and image-to-image translation. The library implements class-specific reporting for multi-class tasks through configurable parameters to cover all use cases, while incorporating task-specific parameters to resolve metric computation discrepancies across implementations. Various datasets from domains like healthcare, finance, and real estate were applied to our library and compared with Python, Matlab, and R components to identify which yield similar results. AllMetrics combines a modular Application Programming Interface (API) with robust input validation mechanisms to ensure reproducibility and reliability in model evaluation. This paper presents the design principles, architectural components, and empirical analyses demonstrating the ability to mitigate evaluation errors and to enhance the trustworthiness of ML workflows.
Self-supervised image denoising methods have garnered significant research attention in recent years, for this kind of method reduces the requirement of large training datasets. Compared to supervised methods, self-supervised methods rely more on the prior embedded in deep networks themselves. As a result, most of the self-supervised methods are designed with Convolution Neural Networks (CNNs) architectures, which well capture one of the most important image prior, translation equivariant prior. Inspired by the great success achieved by the introduction of translational equivariance, in this paper, we explore the way to further incorporate another important image prior. Specifically, we first apply high-accuracy rotation equivariant convolution to self-supervised image denoising. Through rigorous theoretical analysis, we have proved that simply replacing all the convolution layers with rotation equivariant convolution layers would modify the network into its rotation equivariant version. To the best of our knowledge, this is the first time that rotation equivariant image prior is introduced to self-supervised image denoising at the network architecture level with a comprehensive theoretical analysis of equivariance errors, which offers a new perspective to the field of self-supervised image denoising. Moreover, to further improve the performance, we design a new mask mechanism to fusion the output of rotation equivariant network and vanilla CNN-based network, and construct an adaptive rotation equivariant framework. Through extensive experiments on three typical methods, we have demonstrated the effectiveness of the proposed method.




In the current research landscape, multimodal autoregressive (AR) models have shown exceptional capabilities across various domains, including visual understanding and generation. However, complex tasks such as style-aligned text-to-image generation present significant challenges, particularly in data acquisition. In analogy to instruction-following tuning for image editing of AR models, style-aligned generation requires a reference style image and prompt, resulting in a text-image-to-image triplet where the output shares the style and semantics of the input. However, acquiring large volumes of such triplet data with specific styles is considerably more challenging than obtaining conventional text-to-image data used for training generative models. To address this issue, we propose StyleAR, an innovative approach that combines a specially designed data curation method with our proposed AR models to effectively utilize text-to-image binary data for style-aligned text-to-image generation. Our method synthesizes target stylized data using a reference style image and prompt, but only incorporates the target stylized image as the image modality to create high-quality binary data. To facilitate binary data training, we introduce a CLIP image encoder with a perceiver resampler that translates the image input into style tokens aligned with multimodal tokens in AR models and implement a style-enhanced token technique to prevent content leakage which is a common issue in previous work. Furthermore, we mix raw images drawn from large-scale text-image datasets with stylized images to enhance StyleAR's ability to extract richer stylistic features and ensure style consistency. Extensive qualitative and quantitative experiments demonstrate our superior performance.
Knowledge distillation is a model compression technique in which a compact "student" network is trained to replicate the predictive behavior of a larger "teacher" network. In logit-based knowledge distillation it has become the de facto approach to augment cross-entropy with a distillation term. Typically this term is either a KL divergence-matching marginal probabilities or a correlation-based loss capturing intra- and inter-class relationships but in every case it sits as an add-on to cross-entropy with its own weight that must be carefully tuned. In this paper we adopt a choice-theoretic perspective and recast knowledge distillation under the Plackett-Luce model by interpreting teacher logits as "worth" scores. We introduce Plackett-Luce Distillation (PLD), a weighted list-wise ranking loss in which the teacher model transfers knowledge of its full ranking of classes, weighting each ranked choice by its own confidence. PLD directly optimizes a single teacher-optimal ranking of the true label first, followed by the remaining classes in descending teacher confidence, yielding a convex, translation-invariant surrogate that subsumes weighted cross-entropy. Empirically on standard image classification benchmarks, PLD improves Top-1 accuracy by an average of +0.42% over DIST (arXiv:2205.10536) and +1.04% over KD (arXiv:1503.02531) in homogeneous settings and by +0.48% and +1.09% over DIST and KD, respectively, in heterogeneous settings.
With the continuous increase in the number and resolution of video surveillance cameras, the burden of transmitting and storing surveillance video is growing. Traditional communication methods based on Shannon's theory are facing optimization bottlenecks. Semantic communication, as an emerging communication method, is expected to break through this bottleneck and reduce the storage and transmission consumption of video. Existing semantic decoding methods often require many samples to train the neural network for each scene, which is time-consuming and labor-intensive. In this study, a semantic encoding and decoding method for surveillance video is proposed. First, the sketch was extracted as semantic information, and a sketch compression method was proposed to reduce the bit rate of semantic information. Then, an image translation network was proposed to translate the sketch into a video frame with a reference frame. Finally, a few-shot sketch decoding network was proposed to reconstruct video from sketch. Experimental results showed that the proposed method achieved significantly better video reconstruction performance than baseline methods. The sketch compression method could effectively reduce the storage and transmission consumption of semantic information with little compromise on video quality. The proposed method provides a novel semantic encoding and decoding method that only needs a few training samples for each surveillance scene, thus improving the practicality of the semantic communication system.
Comprehensive assessment of the various aspects of the brain's microstructure requires the use of complementary imaging techniques. This includes measuring the spatial distribution of cell bodies (cytoarchitecture) and nerve fibers (myeloarchitecture). The gold standard for cytoarchitectonic analysis is light microscopic imaging of cell-body stained tissue sections. To reveal the 3D orientations of nerve fibers, 3D Polarized Light Imaging (3D-PLI) has been introduced as a reliable technique providing a resolution in the micrometer range while allowing processing of series of complete brain sections. 3D-PLI acquisition is label-free and allows subsequent staining of sections after measurement. By post-staining for cell bodies, a direct link between fiber- and cytoarchitecture can potentially be established within the same section. However, inevitable distortions introduced during the staining process make a nonlinear and cross-modal registration necessary in order to study the detailed relationships between cells and fibers in the images. In addition, the complexity of processing histological sections for post-staining only allows for a limited number of samples. In this work, we take advantage of deep learning methods for image-to-image translation to generate a virtual staining of 3D-PLI that is spatially aligned at the cellular level. In a supervised setting, we build on a unique dataset of brain sections, to which Cresyl violet staining has been applied after 3D-PLI measurement. To ensure high correspondence between both modalities, we address the misalignment of training data using Fourier-based registration methods. In this way, registration can be efficiently calculated during training for local image patches of target and predicted staining. We demonstrate that the proposed method enables prediction of a Cresyl violet staining from 3D-PLI, matching individual cell instances.
Generalizing an object detector trained on a single domain to multiple unseen domains is a challenging task. Existing methods typically introduce image or feature augmentation to diversify the source domain to raise the robustness of the detector. Vision-Language Model (VLM)-based augmentation techniques have been proven to be effective, but they require that the detector's backbone has the same structure as the image encoder of VLM, limiting the detector framework selection. To address this problem, we propose Language-Driven Dual Style Mixing (LDDS) for single-domain generalization, which diversifies the source domain by fully utilizing the semantic information of the VLM. Specifically, we first construct prompts to transfer style semantics embedded in the VLM to an image translation network. This facilitates the generation of style diversified images with explicit semantic information. Then, we propose image-level style mixing between the diversified images and source domain images. This effectively mines the semantic information for image augmentation without relying on specific augmentation selections. Finally, we propose feature-level style mixing in a double-pipeline manner, allowing feature augmentation to be model-agnostic and can work seamlessly with the mainstream detector frameworks, including the one-stage, two-stage, and transformer-based detectors. Extensive experiments demonstrate the effectiveness of our approach across various benchmark datasets, including real to cartoon and normal to adverse weather tasks. The source code and pre-trained models will be publicly available at https://github.com/qinhongda8/LDDS.
Document-level text generation tasks are known to be more difficult than sentence-level text generation tasks as they require the understanding of longer context to generate high-quality texts. In this paper, we investigate the adaption of Minimum Bayes Risk (MBR) decoding for document-level text generation tasks. MBR decoding makes use of a utility function to estimate the output with the highest expected utility from a set of candidate outputs. Although MBR decoding is shown to be effective in a wide range of sentence-level text generation tasks, its performance on document-level text generation tasks is limited as many of the utility functions are designed for evaluating the utility of sentences. To this end, we propose MBR-OT, a variant of MBR decoding using Wasserstein distance to compute the utility of a document using a sentence-level utility function. The experimental result shows that the performance of MBR-OT outperforms that of the standard MBR in document-level machine translation, text simplification, and dense image captioning tasks. Our code is available at https://github.com/jinnaiyuu/mbr-optimal-transport
The main goal of representation learning is to acquire meaningful representations from real-world sensory inputs without supervision. Representation learning explains some aspects of human development. Various neural network (NN) models have been proposed that acquire empirically good representations. However, the formulation of a good representation has not been established. We recently proposed a method for categorizing changes between a pair of sensory inputs. A unique feature of this approach is that transformations between two sensory inputs are learned to satisfy algebraic structural constraints. Conventional representation learning often assumes that disentangled independent feature axes is a good representation; however, we found that such a representation cannot account for conditional independence. To overcome this problem, we proposed a new method using group decomposition in Galois algebra theory. Although this method is promising for defining a more general representation, it assumes pixel-to-pixel translation without feature extraction, and can only process low-resolution images with no background, which prevents real-world application. In this study, we provide a simple method to apply our group decomposition theory to a more realistic scenario by combining feature extraction and object segmentation. We replace pixel translation with feature translation and formulate object segmentation as grouping features under the same transformation. We validated the proposed method on a practical dataset containing both real-world object and background. We believe that our model will lead to a better understanding of human development of object recognition in the real world.




This study presents a novel approach to enhance the cost-to-quality ratio of image generation with diffusion models. We hypothesize that differences between distilled (e.g. FLUX.1-schnell) and baseline (e.g. FLUX.1-dev) models are consistent and, therefore, learnable within a specialized domain, like portrait generation. We generate a synthetic paired dataset and train a fast image-to-image translation head. Using two sets of low- and high-quality synthetic images, our model is trained to refine the output of a distilled generator (e.g., FLUX.1-schnell) to a level comparable to a baseline model like FLUX.1-dev, which is more computationally intensive. Our results show that the pipeline, which combines a distilled version of a large generative model with our enhancement layer, delivers similar photorealistic portraits to the baseline version with up to an 82% decrease in computational cost compared to FLUX.1-dev. This study demonstrates the potential for improving the efficiency of AI solutions involving large-scale image generation.