Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Three-dimensional X-ray histology techniques offer a non-invasive alternative to conventional 2D histology, enabling volumetric imaging of biological tissues without the need for physical sectioning or chemical staining. However, the inherent greyscale image contrast of X-ray tomography limits its biochemical specificity compared to traditional histological stains. Within digital pathology, deep learning-based virtual staining has demonstrated utility in simulating stained appearances from label-free optical images. In this study, we extend virtual staining to the X-ray domain by applying cross-modality image translation to generate artificially stained slices from synchrotron-radiation-based micro-CT scans. Using over 50 co-registered image pairs of micro-CT and toluidine blue-stained histology from bone-implant samples, we trained a modified CycleGAN network tailored for limited paired data. Whole slide histology images were downsampled to match the voxel size of the CT data, with on-the-fly data augmentation for patch-based training. The model incorporates pixelwise supervision and greyscale consistency terms, producing histologically realistic colour outputs while preserving high-resolution structural detail. Our method outperformed Pix2Pix and standard CycleGAN baselines across SSIM, PSNR, and LPIPS metrics. Once trained, the model can be applied to full CT volumes to generate virtually stained 3D datasets, enhancing interpretability without additional sample preparation. While features such as new bone formation were able to be reproduced, some variability in the depiction of implant degradation layers highlights the need for further training data and refinement. This work introduces virtual staining to 3D X-ray imaging and offers a scalable route for chemically informative, label-free tissue characterisation in biomedical research.




Computed tomography (CT) is essential for treatment and diagnostics; In case CT are missing or otherwise difficult to obtain, methods for generating synthetic CT (sCT) images from magnetic resonance imaging (MRI) images are sought after. Therefore, it is valuable to establish a reference for what strategies are most effective for MRI-to-CT translation. In this paper, we compare the performance of two frequently used architectures for MRI-to-CT translation: a conditional generative adversarial network (cGAN) and a conditional denoising diffusion probabilistic model (cDDPM). We chose well-established implementations to represent each architecture: Pix2Pix for cGAN, and Palette for cDDPM. We separate the classical 3D translation problem into a sequence of 2D translations on the transverse plane, to investigate the viability of a strategy that reduces the computational cost. We also investigate the impact of conditioning the generative process on a single MRI image/slice and on multiple MRI slices. The performance is assessed using a thorough evaluation protocol, including a novel slice-wise metric Similarity Of Slices (SIMOS), which measures the continuity between transverse slices when compiling the sCTs into 3D format. Our comparative analysis revealed that MRI-to-CT generative models benefit from multi-channel conditional input and using cDDPM as an architecture.
Multimodal image matching seeks pixel-level correspondences between images of different modalities, crucial for cross-modal perception, fusion and analysis. However, the significant appearance differences between modalities make this task challenging. Due to the scarcity of high-quality annotated datasets, existing deep learning methods that extract modality-common features for matching perform poorly and lack adaptability to diverse scenarios. Vision Foundation Model (VFM), trained on large-scale data, yields generalizable and robust feature representations adapted to data and tasks of various modalities, including multimodal matching. Thus, we propose DistillMatch, a multimodal image matching method using knowledge distillation from VFM. DistillMatch employs knowledge distillation to build a lightweight student model that extracts high-level semantic features from VFM (including DINOv2 and DINOv3) to assist matching across modalities. To retain modality-specific information, it extracts and injects modality category information into the other modality's features, which enhances the model's understanding of cross-modal correlations. Furthermore, we design V2I-GAN to boost the model's generalization by translating visible to pseudo-infrared images for data augmentation. Experiments show that DistillMatch outperforms existing algorithms on public datasets.
We present StyleClone, a method for training image-to-image translation networks to stylize faces in a specific style, even with limited style images. Our approach leverages textual inversion and diffusion-based guided image generation to augment small style datasets. By systematically generating diverse style samples guided by both the original style images and real face images, we significantly enhance the diversity of the style dataset. Using this augmented dataset, we train fast image-to-image translation networks that outperform diffusion-based methods in speed and quality. Experiments on multiple styles demonstrate that our method improves stylization quality, better preserves source image content, and significantly accelerates inference. Additionally, we provide a systematic evaluation of the augmentation techniques and their impact on stylization performance.




Action Quality Assessment (AQA) quantifies human actions in videos, supporting applications in sports scoring, rehabilitation, and skill evaluation. A major challenge lies in the non-stationary nature of quality distributions in real-world scenarios, which limits the generalization ability of conventional methods. We introduce Continual AQA (CAQA), which equips AQA with Continual Learning (CL) capabilities to handle evolving distributions while mitigating catastrophic forgetting. Although parameter-efficient fine-tuning of pretrained models has shown promise in CL for image classification, we find it insufficient for CAQA. Our empirical and theoretical analyses reveal two insights: (i) Full-Parameter Fine-Tuning (FPFT) is necessary for effective representation learning; yet (ii) uncontrolled FPFT induces overfitting and feature manifold shift, thereby aggravating forgetting. To address this, we propose Adaptive Manifold-Aligned Graph Regularization (MAGR++), which couples backbone fine-tuning that stabilizes shallow layers while adapting deeper ones with a two-step feature rectification pipeline: a manifold projector to translate deviated historical features into the current representation space, and a graph regularizer to align local and global distributions. We construct four CAQA benchmarks from three datasets with tailored evaluation protocols and strong baselines, enabling systematic cross-dataset comparison. Extensive experiments show that MAGR++ achieves state-of-the-art performance, with average correlation gains of 3.6% offline and 12.2% online over the strongest baseline, confirming its robustness and effectiveness. Our code is available at https://github.com/ZhouKanglei/MAGRPP.




Modern methods of generative modelling and unpaired image-to-image translation based on Schr\"odinger bridges and stochastic optimal control theory aim to transform an initial density to a target one in an optimal way. In the present paper, we assume that we only have access to i.i.d. samples from initial and final distributions. This makes our setup suitable for both generative modelling and unpaired image-to-image translation. Relying on the stochastic optimal control approach, we choose an Ornstein-Uhlenbeck process as the reference one and estimate the corresponding Schr\"odinger potential. Introducing a risk function as the Kullback-Leibler divergence between couplings, we derive tight bounds on generalization ability of an empirical risk minimizer in a class of Schr\"odinger potentials including Gaussian mixtures. Thanks to the mixing properties of the Ornstein-Uhlenbeck process, we almost achieve fast rates of convergence up to some logarithmic factors in favourable scenarios. We also illustrate performance of the suggested approach with numerical experiments.




Photorealism is an important aspect of modern video games since it can shape the player experience and simultaneously impact the immersion, narrative engagement, and visual fidelity. Although recent hardware technological breakthroughs, along with state-of-the-art rendering technologies, have significantly improved the visual realism of video games, achieving true photorealism in dynamic environments at real-time frame rates still remains a major challenge due to the tradeoff between visual quality and performance. In this short paper, we present a novel approach for enhancing the photorealism of rendered game frames using generative adversarial networks. To this end, we propose Real-time photorealism Enhancement in Games via a dual-stage gEnerative Network framework (REGEN), which employs a robust unpaired image-to-image translation model to produce semantically consistent photorealistic frames that transform the problem into a simpler paired image-to-image translation task. This enables training with a lightweight method that can achieve real-time inference time without compromising visual quality. We demonstrate the effectiveness of our framework on Grand Theft Auto V, showing that the approach achieves visual results comparable to the ones produced by the robust unpaired Im2Im method while improving inference speed by 32.14 times. Our findings also indicate that the results outperform the photorealism-enhanced frames produced by directly training a lightweight unpaired Im2Im translation method to translate the video game frames towards the visual characteristics of real-world images. Code, pre-trained models, and demos for this work are available at: https://github.com/stefanos50/REGEN.
This survey examines multilingual vision-language models that process text and images across languages. We review 31 models and 21 benchmarks, spanning encoder-only and generative architectures, and identify a key tension between language neutrality (consistent cross-lingual representations) and cultural awareness (adaptation to cultural contexts). Current training methods favor neutrality through contrastive learning, while cultural awareness depends on diverse data. Two-thirds of evaluation benchmarks use translation-based approaches prioritizing semantic consistency, though recent work incorporates culturally grounded content. We find discrepancies in cross-lingual capabilities and gaps between training objectives and evaluation goals.




As multimodal LLM-driven agents continue to advance in autonomy and generalization, evaluation based on static datasets can no longer adequately assess their true capabilities in dynamic environments and diverse tasks. Existing LLM-based synthetic data methods are largely designed for LLM training and evaluation, and thus cannot be directly applied to agent tasks that require tool use and interactive capabilities. While recent studies have explored automatic agent task generation with LLMs, most efforts remain limited to text or image analysis, without systematically modeling multi-step interactions in web environments. To address these challenges, we propose Graph2Eval, a knowledge graph-based framework that automatically generates both multimodal document comprehension tasks and web interaction tasks, enabling comprehensive evaluation of agents' reasoning, collaboration, and interactive capabilities. In our approach, knowledge graphs constructed from multi-source external data serve as the task space, where we translate semantic relations into structured multimodal tasks using subgraph sampling, task templates, and meta-paths. A multi-stage filtering pipeline based on node reachability, LLM scoring, and similarity analysis is applied to guarantee the quality and executability of the generated tasks. Furthermore, Graph2Eval supports end-to-end evaluation of multiple agent types (Single-Agent, Multi-Agent, Web Agent) and measures reasoning, collaboration, and interaction capabilities. We instantiate the framework with Graph2Eval-Bench, a curated dataset of 1,319 tasks spanning document comprehension and web interaction scenarios. Experiments show that Graph2Eval efficiently generates tasks that differentiate agent and model performance, revealing gaps in reasoning, collaboration, and web interaction across different settings and offering a new perspective for agent evaluation.
The goal of multimodal image fusion is to integrate complementary information from infrared and visible images, generating multimodal fused images for downstream tasks. Existing downstream pre-training models are typically trained on visible images. However, the significant pixel distribution differences between visible and multimodal fusion images can degrade downstream task performance, sometimes even below that of using only visible images. This paper explores adapting multimodal fused images with significant modality differences to object detection and semantic segmentation models trained on visible images. To address this, we propose MambaTrans, a novel multimodal fusion image modality translator. MambaTrans uses descriptions from a multimodal large language model and masks from semantic segmentation models as input. Its core component, the Multi-Model State Space Block, combines mask-image-text cross-attention and a 3D-Selective Scan Module, enhancing pure visual capabilities. By leveraging object detection prior knowledge, MambaTrans minimizes detection loss during training and captures long-term dependencies among text, masks, and images. This enables favorable results in pre-trained models without adjusting their parameters. Experiments on public datasets show that MambaTrans effectively improves multimodal image performance in downstream tasks.