Abstract:Smartphones have significantly enhanced our daily learning, communication, and entertainment, becoming an essential component of modern life. However, certain populations, including the elderly and individuals with disabilities, encounter challenges in utilizing smartphones, thus necessitating mobile app operation assistants, a.k.a. mobile app agent. With considerations for privacy, permissions, and cross-platform compatibility issues, we endeavor to devise and develop PeriGuru in this work, a peripheral robotic mobile app operation assistant based on GUI image understanding and prompting with Large Language Model (LLM). PeriGuru leverages a suite of computer vision techniques to analyze GUI screenshot images and employs LLM to inform action decisions, which are then executed by robotic arms. PeriGuru achieves a success rate of 81.94% on the test task set, which surpasses by more than double the method without PeriGuru's GUI image interpreting and prompting design. Our code is available on https://github.com/Z2sJ4t/PeriGuru.
Abstract:As a widely used localization and sensing technique, radars will play an important role in future wireless networks. However, the wireless channels between the radar and the targets are passively adopted by traditional radars, which limits the performance of target detection. To address this issue, we propose to use the reconfigurable intelligent surface (RIS) to improve the detection accuracy of radar systems due to its capability to customize channel conditions by adjusting its phase shifts, which is referred to as MetaRadar. In such a system, it is challenging to jointly optimize both radar waveforms and RIS phase shifts in order to improve the multi-target detection performance. To tackle this challenge, we design a waveform and phase shift optimization (WPSO) algorithm to effectively solve the multi-target detection problem, and also analyze the performance of the proposed MetaRadar scheme theoretically. Simulation results show that the detection performance of the MetaRadar scheme is significantly better than that of the traditional radar schemes.
Abstract:Semantic segmentation is a process of partitioning an image into multiple segments for recognizing humans and objects, which can be widely applied in scenarios such as healthcare and safety monitoring. To avoid privacy violation, using RF signals instead of an image for human and object recognition has gained increasing attention. However, human and object recognition by using RF signals is usually a passive signal collection and analysis process without changing the radio environment, and the recognition accuracy is restricted significantly by unwanted multi-path fading, and/or the limited number of independent channels between RF transceivers in uncontrollable radio environments. This paper introduces MetaSketch, a novel RF-sensing system that performs semantic recognition and segmentation for humans and objects by making the radio environment reconfigurable. A metamaterial surface is incorporated into MetaSketch and diversifies the information carried by RF signals. Using compressive sensing techniques, MetaSketch reconstructs a point cloud consisting of the reflection coefficients of humans and objects at different spatial points, and recognizes the semantic meaning of the points by using symmetric multilayer perceptron groups. Our evaluation results show that MetaSketch is capable of generating favorable radio environments and extracting exact point clouds, and labeling the semantic meaning of the points with an average error rate of less than 1% in an indoor space.
Abstract:Indoor wireless simultaneous localization and mapping (SLAM) is considered as a promising technique to provide positioning services in future 6G systems. However, the accuracy of traditional wireless SLAM system heavily relies on the quality of propagation paths, which is limited by the uncontrollable wireless environment. In this paper, we propose a novel SLAM system assisted by a reconfigurable intelligent surface (RIS) to address this issue. By configuring the phase shifts of the RIS, the strength of received signals can be enhanced to resist the disturbance of noise. However, the selection of phase shifts heavily influences the localization and mapping phase, which makes the design very challenging. To tackle this challenge, we formulate the RIS-assisted indoor SLAM optimization problem and design an error minimization algorithm for it. Simulations show that the RIS assisted SLAM system can decrease the positioning error by at least 31% compared with benchmark schemes.
Abstract:In the coming 6G communications, the internet of things (IoT) serves as a key enabler to collect environmental information and is expected to achieve ubiquitous deployment. However, it is challenging for traditional IoT sensors to meet this demand because of their requirement of power supplies and frequent maintenance, which is due to their sense-then-transmit working principle. To address this challenge, we propose a meta-IoT sensing system, where the IoT sensors are based on specially designed meta-materials. The meta-IoT sensors achieve simultaneous sensing and transmission and thus require no power supplies. In order to design a meta-IoT sensing system with optimal sensing accuracy, we jointly consider the sensing and transmission of meta-IoT sensors and propose an efficient algorithm to jointly optimizes the meta-IoT structure and the sensing function at the receiver of the system. As an example, we apply the proposed system and algorithm in sensing environmental temperature and humidity levels. Simulation results show that by using the proposed algorithm, the sensing accuracy can be significantly increased.
Abstract:Traffic flow forecasting is of great significance for improving the efficiency of transportation systems and preventing emergencies. Due to the highly non-linearity and intricate evolutionary patterns of short-term and long-term traffic flow, existing methods often fail to take full advantage of spatial-temporal information, especially the various temporal patterns with different period shifting and the characteristics of road segments. Besides, the globality representing the absolute value of traffic status indicators and the locality representing the relative value have not been considered simultaneously. This paper proposes a neural network model that focuses on the globality and locality of traffic networks as well as the temporal patterns of traffic data. The cycle-based dilated deformable convolution block is designed to capture different time-varying trends on each node accurately. Our model can extract both global and local spatial information since we combine two graph convolutional network methods to learn the representations of nodes and edges. Experiments on two real-world datasets show that the model can scrutinize the spatial-temporal correlation of traffic data, and its performance is better than the compared state-of-the-art methods. Further analysis indicates that the locality and globality of the traffic networks are critical to traffic flow prediction and the proposed TSSRGCN model can adapt to the various temporal traffic patterns.
Abstract:The convolutional neural network has achieved great success in fulfilling computer vision tasks despite large computation overhead against efficient deployment. Structured (channel) pruning is usually applied to reduce the model redundancy while preserving the network structure, such that the pruned network can be easily deployed in practice. However, existing structured pruning methods require hand-crafted rules which may lead to tremendous pruning space. In this paper, we introduce Differentiable Annealing Indicator Search (DAIS) that leverages the strength of neural architecture search in the channel pruning and automatically searches for the effective pruned model with given constraints on computation overhead. Specifically, DAIS relaxes the binarized channel indicators to be continuous and then jointly learns both indicators and model parameters via bi-level optimization. To bridge the non-negligible discrepancy between the continuous model and the target binarized model, DAIS proposes an annealing-based procedure to steer the indicator convergence towards binarized states. Moreover, DAIS designs various regularizations based on a priori structural knowledge to control the pruning sparsity and to improve model performance. Experimental results show that DAIS outperforms state-of-the-art pruning methods on CIFAR-10, CIFAR-100, and ImageNet.
Abstract:Knowledge distillation has become increasingly important in model compression. It boosts the performance of a miniaturized student network with the supervision of the output distribution and feature maps from a sophisticated teacher network. Some recent works introduce multi-teacher distillation to provide more supervision to the student network. However, the effectiveness of multi-teacher distillation methods are accompanied by costly computation resources. To tackle with both the efficiency and the effectiveness of knowledge distillation, we introduce the feature aggregation to imitate the multi-teacher distillation in the single-teacher distillation framework by extracting informative supervision from multiple teacher feature maps. Specifically, we introduce DFA, a two-stage Differentiable Feature Aggregation search method that motivated by DARTS in neural architecture search, to efficiently find the aggregations. In the first stage, DFA formulates the searching problem as a bi-level optimization and leverages a novel bridge loss, which consists of a student-to-teacher path and a teacher-to-student path, to find appropriate feature aggregations. The two paths act as two players against each other, trying to optimize the unified architecture parameters to the opposite directions while guaranteeing both expressivity and learnability of the feature aggregation simultaneously. In the second stage, DFA performs knowledge distillation with the derived feature aggregation. Experimental results show that DFA outperforms existing methods on CIFAR-100 and CINIC-10 datasets under various teacher-student settings, verifying the effectiveness and robustness of the design.
Abstract:Federated learning (FL) is an emerging distributed machine learning paradigm that stands out with its inherent privacy-preserving advantages. Heterogeneity is one of the core challenges in FL, which resides in the diverse user behaviors and hardware capacity across devices who participate in the training. Heterogeneity inherently exerts a huge influence on the FL training process, e.g., causing device unavailability. However, existing FL literature usually ignores the impacts of heterogeneity. To fill in the knowledge gap, we build FLASH, the first heterogeneity-aware FL platform. Based on FLASH and a large-scale user trace from 136k real-world users, we demonstrate the usefulness of FLASH in anatomizing the impacts of heterogeneity in FL by exploring three previously unaddressed research questions: whether and how can heterogeneity affect FL performance; how to configure a heterogeneity-aware FL system; and what are heterogeneity's impacts on existing FL optimizations. It shows that heterogeneity causes nontrivial performance degradation in FL from various aspects, and even invalidates some typical FL optimizations.
Abstract:User behavior and feature interactions are crucial in deep learning-based recommender systems. There has been a diverse set of behavior modeling and interaction exploration methods in the literature. Nevertheless, the design of task-aware recommender systems still requires feature engineering and architecture engineering from domain experts. In this work, we introduce AMER, namely Automatic behavior Modeling and interaction Exploration in Recommender systems with Neural Architecture Search (NAS). The core contributions of AMER include the three-stage search space and the tailored three-step searching pipeline. In the first step, AMER searches for residual blocks that incorporate commonly used operations in the block-wise search space of stage 1 to model sequential patterns in user behavior. In the second step, it progressively investigates useful low-order and high-order feature interactions in the non-sequential interaction space of stage 2. Finally, an aggregation multi-layer perceptron (MLP) with shortcut connection is selected from flexible dimension settings of stage~3 to combine features extracted from the previous steps. For efficient and effective NAS, AMER employs the one-shot random search in all three steps. Further analysis reveals that AMER's search space could cover most of the representative behavior extraction and interaction investigation methods, which demonstrates the universality of our design. The extensive experimental results over various scenarios reveal that AMER could outperform competitive baselines with elaborate feature engineering and architecture engineering, indicating both effectiveness and robustness of the proposed method.