Topic:Scene Text Recognition
What is Scene Text Recognition? Scene text recognition is the process of identifying and transcribing text in natural scenes using computer vision techniques.
Papers and Code
Jan 02, 2024
Abstract:The laws of model size, data volume, computation and model performance have been extensively studied in the field of Natural Language Processing (NLP). However, the scaling laws in Optical Character Recognition (OCR) have not yet been investigated. To address this, we conducted comprehensive studies that involved examining the correlation between performance and the scale of models, data volume and computation in the field of text recognition.Conclusively, the study demonstrates smooth power laws between performance and model size, as well as training data volume, when other influencing factors are held constant. Additionally, we have constructed a large-scale dataset called REBU-Syn, which comprises 6 million real samples and 18 million synthetic samples. Based on our scaling law and new dataset, we have successfully trained a scene text recognition model, achieving a new state-ofthe-art on 6 common test benchmarks with a top-1 average accuracy of 97.42%.
Via

Jun 06, 2024
Abstract:Contextual cues related to a person's pose and interactions with objects and other people in the scene can provide valuable information for gaze following. While existing methods have focused on dedicated cue extraction methods, in this work we investigate the zero-shot capabilities of Vision-Language Models (VLMs) for extracting a wide array of contextual cues to improve gaze following performance. We first evaluate various VLMs, prompting strategies, and in-context learning (ICL) techniques for zero-shot cue recognition performance. We then use these insights to extract contextual cues for gaze following, and investigate their impact when incorporated into a state of the art model for the task. Our analysis indicates that BLIP-2 is the overall top performing VLM and that ICL can improve performance. We also observe that VLMs are sensitive to the choice of the text prompt although ensembling over multiple text prompts can provide more robust performance. Additionally, we discover that using the entire image along with an ellipse drawn around the target person is the most effective strategy for visual prompting. For gaze following, incorporating the extracted cues results in better generalization performance, especially when considering a larger set of cues, highlighting the potential of this approach.
* Accepted at the GAZE Workshop at CVPR 2024
Via

Mar 20, 2024
Abstract:Text recognition, especially for complex scripts like Chinese, faces unique challenges due to its intricate character structures and vast vocabulary. Traditional one-hot encoding methods struggle with the representation of hierarchical radicals, recognition of Out-Of-Vocabulary (OOV) characters, and on-device deployment due to their computational intensity. To address these challenges, we propose HierCode, a novel and lightweight codebook that exploits the innate hierarchical nature of Chinese characters. HierCode employs a multi-hot encoding strategy, leveraging hierarchical binary tree encoding and prototype learning to create distinctive, informative representations for each character. This approach not only facilitates zero-shot recognition of OOV characters by utilizing shared radicals and structures but also excels in line-level recognition tasks by computing similarity with visual features, a notable advantage over existing methods. Extensive experiments across diverse benchmarks, including handwritten, scene, document, web, and ancient text, have showcased HierCode's superiority for both conventional and zero-shot Chinese character or text recognition, exhibiting state-of-the-art performance with significantly fewer parameters and fast inference speed.
Via

Jun 03, 2024
Abstract:While diffusion models have significantly advanced the quality of image generation, their capability to accurately and coherently render text within these images remains a substantial challenge. Conventional diffusion-based methods for scene text generation are typically limited by their reliance on an intermediate layout output. This dependency often results in a constrained diversity of text styles and fonts, an inherent limitation stemming from the deterministic nature of the layout generation phase. To address these challenges, this paper introduces SceneTextGen, a novel diffusion-based model specifically designed to circumvent the need for a predefined layout stage. By doing so, SceneTextGen facilitates a more natural and varied representation of text. The novelty of SceneTextGen lies in its integration of three key components: a character-level encoder for capturing detailed typographic properties, coupled with a character-level instance segmentation model and a word-level spotting model to address the issues of unwanted text generation and minor character inaccuracies. We validate the performance of our method by demonstrating improved character recognition rates on generated images across different public visual text datasets in comparison to both standard diffusion based methods and text specific methods.
Via

Nov 22, 2023
Abstract:Scene Text Image Super-Resolution (STISR) aims to enhance the resolution and legibility of text within low-resolution (LR) images, consequently elevating recognition accuracy in Scene Text Recognition (STR). Previous methods predominantly employ discriminative Convolutional Neural Networks (CNNs) augmented with diverse forms of text guidance to address this issue. Nevertheless, they remain deficient when confronted with severely blurred images, due to their insufficient generation capability when little structural or semantic information can be extracted from original images. Therefore, we introduce RGDiffSR, a Recognition-Guided Diffusion model for scene text image Super-Resolution, which exhibits great generative diversity and fidelity even in challenging scenarios. Moreover, we propose a Recognition-Guided Denoising Network, to guide the diffusion model generating LR-consistent results through succinct semantic guidance. Experiments on the TextZoom dataset demonstrate the superiority of RGDiffSR over prior state-of-the-art methods in both text recognition accuracy and image fidelity.
Via

Oct 14, 2023
Abstract:Explainable AI (XAI) is the study on how humans can be able to understand the cause of a model's prediction. In this work, the problem of interest is Scene Text Recognition (STR) Explainability, using XAI to understand the cause of an STR model's prediction. Recent XAI literatures on STR only provide a simple analysis and do not fully explore other XAI methods. In this study, we specifically work on data explainability frameworks, called attribution-based methods, that explain the important parts of an input data in deep learning models. However, integrating them into STR produces inconsistent and ineffective explanations, because they only explain the model in the global context. To solve this problem, we propose a new method, STRExp, to take into consideration the local explanations, i.e. the individual character prediction explanations. This is then benchmarked across different attribution-based methods on different STR datasets and evaluated across different STR models.
* T2023 IEEE International Conference on Image Processing (ICIP). IEEE,
2023
Via

May 30, 2024
Abstract:Recent advances in deep learning have led to a data-centric intelligence i.e. artificially intelligent models unlocking the potential to ingest a large amount of data and be really good at performing digital tasks such as text-to-image generation, machine-human conversation, and image recognition. This thesis covers the topic of learning with structured inductive bias and priors to design approaches and algorithms unlocking the potential of principle-centric intelligence. Prior knowledge (priors for short), often available in terms of past experience as well as assumptions of how the world works, helps the autonomous agent generalize better and adapt their behavior based on past experience. In this thesis, I demonstrate the use of prior knowledge in three different robotics perception problems. 1. object-centric 3D reconstruction, 2. vision and language for decision-making, and 3. 3D scene understanding. To solve these challenging problems, I propose various sources of prior knowledge including 1. geometry and appearance priors from synthetic data, 2. modularity and semantic map priors and 3. semantic, structural, and contextual priors. I study these priors for solving robotics 3D perception tasks and propose ways to efficiently encode them in deep learning models. Some priors are used to warm-start the network for transfer learning, others are used as hard constraints to restrict the action space of robotics agents. While classical techniques are brittle and fail to generalize to unseen scenarios and data-centric approaches require a large amount of labeled data, this thesis aims to build intelligent agents which require very-less real-world data or data acquired only from simulation to generalize to highly dynamic and cluttered environments in novel simulations (i.e. sim2sim) or real-world unseen environments (i.e. sim2real) for a holistic scene understanding of the 3D world.
* Georgia Tech Ph.D. Thesis, December 2023. For more details:
https://zubairirshad.com/
Via

Nov 16, 2023
Abstract:Scene Text Image Super-resolution (STISR) has recently achieved great success as a preprocessing method for scene text recognition. STISR aims to transform blurred and noisy low-resolution (LR) text images in real-world settings into clear high-resolution (HR) text images suitable for scene text recognition. In this study, we leverage text-conditional diffusion models (DMs), known for their impressive text-to-image synthesis capabilities, for STISR tasks. Our experimental results revealed that text-conditional DMs notably surpass existing STISR methods. Especially when texts from LR text images are given as input, the text-conditional DMs are able to produce superior quality super-resolution text images. Utilizing this capability, we propose a novel framework for synthesizing LR-HR paired text image datasets. This framework consists of three specialized text-conditional DMs, each dedicated to text image synthesis, super-resolution, and image degradation. These three modules are vital for synthesizing distinct LR and HR paired images, which are more suitable for training STISR methods. Our experiments confirmed that these synthesized image pairs significantly enhance the performance of STISR methods in the TextZoom evaluation.
* WACV 2024
Via

Oct 10, 2023
Abstract:In this paper, we explore the potential of the Contrastive Language-Image Pretraining (CLIP) model in scene text recognition (STR), and establish a novel Symmetrical Linguistic Feature Distillation framework (named CLIP-OCR) to leverage both visual and linguistic knowledge in CLIP. Different from previous CLIP-based methods mainly considering feature generalization on visual encoding, we propose a symmetrical distillation strategy (SDS) that further captures the linguistic knowledge in the CLIP text encoder. By cascading the CLIP image encoder with the reversed CLIP text encoder, a symmetrical structure is built with an image-to-text feature flow that covers not only visual but also linguistic information for distillation.Benefiting from the natural alignment in CLIP, such guidance flow provides a progressive optimization objective from vision to language, which can supervise the STR feature forwarding process layer-by-layer.Besides, a new Linguistic Consistency Loss (LCL) is proposed to enhance the linguistic capability by considering second-order statistics during the optimization. Overall, CLIP-OCR is the first to design a smooth transition between image and text for the STR task.Extensive experiments demonstrate the effectiveness of CLIP-OCR with 93.8% average accuracy on six popular STR benchmarks.Code will be available at https://github.com/wzx99/CLIPOCR.
* Accepted by ACM MM 2023
Via

Mar 14, 2024
Abstract:Scene-Text Visual Question Answering (ST-VQA) aims to understand scene text in images and answer questions related to the text content. Most existing methods heavily rely on the accuracy of Optical Character Recognition (OCR) systems, and aggressive fine-tuning based on limited spatial location information and erroneous OCR text information often leads to inevitable overfitting. In this paper, we propose a multimodal adversarial training architecture with spatial awareness capabilities. Specifically, we introduce an Adversarial OCR Enhancement (AOE) module, which leverages adversarial training in the embedding space of OCR modality to enhance fault-tolerant representation of OCR texts, thereby reducing noise caused by OCR errors. Simultaneously, We add a Spatial-Aware Self-Attention (SASA) mechanism to help the model better capture the spatial relationships among OCR tokens. Various experiments demonstrate that our method achieves significant performance improvements on both the ST-VQA and TextVQA datasets and provides a novel paradigm for multimodal adversarial training.
* 6 pages, 3 figures, accepted by 2024 IEEE International Conference on
Multimedia and Expo
Via
