Music generation is the task of generating music or music-like sounds from a model or algorithm.
Recent advances in text-to-music generation (TTM) have yielded high-quality results, but often at the cost of extensive compute and the use of large proprietary internal data. To improve the affordability and openness of TTM training, an open-source generative model backbone that is more training- and data-efficient is needed. In this paper, we constrain the number of trainable parameters in the generative model to match that of the MusicGen-small benchmark (with about 300M parameters), and replace its Transformer backbone with the emerging class of state-space models (SSMs). Specifically, we explore different SSM variants for sequence modeling, and compare a single-stage SSM-based design with a decomposable two-stage SSM/diffusion hybrid design. All proposed models are trained from scratch on a purely public dataset comprising 457 hours of CC-licensed music, ensuring full openness. Our experimental findings are three-fold. First, we show that SSMs exhibit superior training efficiency compared to the Transformer counterpart. Second, despite using only 9% of the FLOPs and 2% of the training data size compared to the MusicGen-small benchmark, our model achieves competitive performance in both objective metrics and subjective listening tests based on MusicCaps captions. Finally, our scaling-down experiment demonstrates that SSMs can maintain competitive performance relative to the Transformer baseline even at the same training budget (measured in iterations), when the model size is reduced to four times smaller. To facilitate the democratization of TTM research, the processed captions, model checkpoints, and source code are available on GitHub via the project page: https://lonian6.github.io/ssmttm/.
This study explores the capacity of generative artificial intelligence (Gen AI) to contribute to the construction of peace narratives and the revitalization of musical heritage in Mali. The study has been made in a political and social context where inter-community tensions and social fractures motivate a search for new symbolic frameworks for reconciliation. The study empirically explores three questions: (1) how Gen AI can be used as a tool for musical creation rooted in national languages and traditions; (2) to what extent Gen AI systems enable a balanced hybridization between technological innovation and cultural authenticity; and (3) how AI-assisted musical co-creation can strengthen social cohesion and cultural sovereignty. The experimental results suggest that Gen AI, embedded in a culturally conscious participatory framework, can act as a catalyst for symbolic diplomacy, amplifying local voices instead of standardizing them. However, challenges persist regarding the availability of linguistic corpora, algorithmic censorship, and the ethics of generating compositions derived from copyrighted sources.
With the rise of generative AI technology, anyone can now easily create and deploy AI-generated music, which has heightened the need for technical solutions to address copyright and ownership issues. While existing works mainly focused on short-audio, the challenge of full-audio detection, which requires modeling long-term structure and context, remains insufficiently explored. To address this, we propose an improved version of the Segment Transformer, termed the Fusion Segment Transformer. As in our previous work, we extract content embeddings from short music segments using diverse feature extractors. Furthermore, we enhance the architecture for full-audio AI-generated music detection by introducing a Gated Fusion Layer that effectively integrates content and structural information, enabling the capture of long-term context. Experiments on the SONICS and AIME datasets show that our approach outperforms the previous model and recent baselines, achieving state-of-the-art results in AI-generated music detection.
Environmental sounds like footsteps, keyboard typing, or dog barking carry rich information and emotional context, making them valuable for designing haptics in user applications. Existing audio-to-vibration methods, however, rely on signal-processing rules tuned for music or games and often fail to generalize across diverse sounds. To address this, we first investigated user perception of four existing audio-to-haptic algorithms, then created a data-driven model for environmental sounds. In Study 1, 34 participants rated vibrations generated by the four algorithms for 1,000 sounds, revealing no consistent algorithm preferences. Using this dataset, we trained Sound2Hap, a CNN-based autoencoder, to generate perceptually meaningful vibrations from diverse sounds with low latency. In Study 2, 15 participants rated its output higher than signal-processing baselines on both audio-vibration match and Haptic Experience Index (HXI), finding it more harmonious with diverse sounds. This work demonstrates a perceptually validated approach to audio-haptic translation, broadening the reach of sound-driven haptics.
Self-Organizing Maps provide topology-preserving projections of high-dimensional data and have been widely used for visualization, clustering, and vector quantization. In this work, we show that the activation pattern of a SOM - the squared distances to its prototypes - can be inverted to recover the exact input under mild geometric conditions. This follows from a classical fact in Euclidean distance geometry: a point in $D$ dimensions is uniquely determined by its distances to $D{+}1$ affinely independent references. We derive the corresponding linear system and characterize the conditions under which the inversion is well-posed. Building upon this mechanism, we introduce the Manifold-Aware Unified SOM Inversion and Control (MUSIC) update rule, which enables controlled, semantically meaningful trajectories in latent space. MUSIC modifies squared distances to selected prototypes while preserving others, resulting in a deterministic geometric flow aligned with the SOM's piecewise-linear structure. Tikhonov regularization stabilizes the update rule and ensures smooth motion on high-dimensional datasets. Unlike variational or probabilistic generative models, MUSIC does not rely on sampling, latent priors, or encoder-decoder architectures. If no perturbation is applied, inversion recovers the exact input; when a target cluster or prototype is specified, MUSIC produces coherent semantic variations while remaining on the data manifold. This leads to a new perspective on data augmentation and controllable latent exploration based solely on prototype geometry. We validate the approach using synthetic Gaussian mixtures, the MNIST and the Faces in the Wild dataset. Across all settings, MUSIC produces smooth, interpretable trajectories that reveal the underlying geometry of the learned manifold, illustrating the advantages of SOM-based inversion over unsupervised clustering.
Concept-based interpretability methods like TCAV require clean, well-separated positive and negative examples for each concept. Existing music datasets lack this structure: tags are sparse, noisy, or ill-defined. We introduce ConceptCaps, a dataset of 23k music-caption-audio triplets with explicit labels from a 200-attribute taxonomy. Our pipeline separates semantic modeling from text generation: a VAE learns plausible attribute co-occurrence patterns, a fine-tuned LLM converts attribute lists into professional descriptions, and MusicGen synthesizes corresponding audio. This separation improves coherence and controllability over end-to-end approaches. We validate the dataset through audio-text alignment (CLAP), linguistic quality metrics (BERTScore, MAUVE), and TCAV analysis confirming that concept probes recover musically meaningful patterns. Dataset and code are available online.
Music generative artificial intelligence (AI) is rapidly expanding music content, necessitating automated song aesthetics evaluation. However, existing studies largely focus on speech, audio or singing quality, leaving song aesthetics underexplored. Moreover, conventional approaches often predict a precise Mean Opinion Score (MOS) value directly, which struggles to capture the nuances of human perception in song aesthetics evaluation. This paper proposes a song-oriented aesthetics evaluation framework, featuring two novel modules: 1) Multi-Stem Attention Fusion (MSAF) builds bidirectional cross-attention between mixture-vocal and mixture-accompaniment pairs, fusing them to capture complex musical features; 2) Hierarchical Granularity-Aware Interval Aggregation (HiGIA) learns multi-granularity score probability distributions, aggregates them into a score interval, and applies a regression within the interval to produce the final score. We evaluated on two datasets of full-length songs: SongEval dataset (AI-generated) and an internal aesthetics dataset (human-created), and compared with two state-of-the-art (SOTA) models. Results show that the proposed method achieves stronger performance for multi-dimensional song aesthetics evaluation.
Music shapes the tone of videos, yet creators often struggle to find soundtracks that match their video's mood and narrative. Recent text-to-music models let creators generate music from text prompts, but our formative study (N=8) shows creators struggle to construct diverse prompts, quickly review and compare tracks, and understand their impact on the video. We present VidTune, a system that supports soundtrack creation by generating diverse music options from a creator's prompt and producing contextual thumbnails for rapid review. VidTune extracts representative video subjects to ground thumbnails in context, maps each track's valence and energy onto visual cues like color and brightness, and depicts prominent genres and instruments. Creators can refine tracks through natural language edits, which VidTune expands into new generations. In a controlled user study (N=12) and an exploratory case study (N=6), participants found VidTune helpful for efficiently reviewing and comparing music options and described the process as playful and enriching.
Generative recommendation systems have achieved significant advances by leveraging semantic IDs to represent items. However, existing approaches that tokenize each modality independently face two critical limitations: (1) redundancy across modalities that reduces efficiency, and (2) failure to capture inter-modal interactions that limits item representation. We introduce FusID, a modality-fused semantic ID framework that addresses these limitations through three key components: (i) multimodal fusion that learns unified representations by jointly encoding information across modalities, (ii) representation learning that brings frequently co-occurring item embeddings closer while maintaining distinctiveness and preventing feature redundancy, and (iii) product quantization that converts the fused continuous embeddings into multiple discrete tokens to mitigate ID conflict. Evaluated on a multimodal next-song recommendation (i.e., playlist continuation) benchmark, FusID achieves zero ID conflicts, ensuring that each token sequence maps to exactly one song, mitigates codebook underutilization, and outperforms baselines in terms of MRR and Recall@k (k = 1, 5, 10, 20).
This paper summarizes the ICASSP 2026 Automatic Song Aesthetics Evaluation (ASAE) Challenge, which focuses on predicting the subjective aesthetic scores of AI-generated songs. The challenge consists of two tracks: Track 1 targets the prediction of the overall musicality score, while Track 2 focuses on predicting five fine-grained aesthetic scores. The challenge attracted strong interest from the research community and received numerous submissions from both academia and industry. Top-performing systems significantly surpassed the official baseline, demonstrating substantial progress in aligning objective metrics with human aesthetic preferences. The outcomes establish a standardized benchmark and advance human-aligned evaluation methodologies for modern music generation systems.