Table To Text Generation


Table-to-text generation is the process of generating natural language descriptions from structured data tables, typically using pretrained language models.

Automated Text-to-Table for Reasoning-Intensive Table QA: Pipeline Design and Benchmarking Insights

Add code
May 26, 2025
Viaarxiv icon

SQUiD: Synthesizing Relational Databases from Unstructured Text

Add code
May 25, 2025
Viaarxiv icon

Weaver: Interweaving SQL and LLM for Table Reasoning

Add code
May 25, 2025
Viaarxiv icon

VTool-R1: VLMs Learn to Think with Images via Reinforcement Learning on Multimodal Tool Use

Add code
May 25, 2025
Viaarxiv icon

UNJOIN: Enhancing Multi-Table Text-to-SQL Generation via Schema Simplification

Add code
May 23, 2025
Viaarxiv icon

A Domain Ontology for Modeling the Book of Purification in Islam

Add code
May 23, 2025
Viaarxiv icon

Benchmarking Retrieval-Augmented Multimomal Generation for Document Question Answering

Add code
May 22, 2025
Viaarxiv icon

SchemaGraphSQL: Efficient Schema Linking with Pathfinding Graph Algorithms for Text-to-SQL on Large-Scale Databases

Add code
May 23, 2025
Viaarxiv icon

Alignment and Safety of Diffusion Models via Reinforcement Learning and Reward Modeling: A Survey

Add code
May 23, 2025
Viaarxiv icon

ChartCards: A Chart-Metadata Generation Framework for Multi-Task Chart Understanding

Add code
May 21, 2025
Viaarxiv icon