Abstract:The emergence of Multi-modal Large Language Models (MLLMs) presents new opportunities for chart understanding. However, due to the fine-grained nature of these tasks, applying MLLMs typically requires large, high-quality datasets for task-specific fine-tuning, leading to high data collection and training costs. To address this, we propose ChartCards, a unified chart-metadata generation framework for multi-task chart understanding. ChartCards systematically synthesizes various chart information, including data tables, visualization code, visual elements, and multi-dimensional semantic captions. By structuring this information into organized metadata, ChartCards enables a single chart to support multiple downstream tasks, such as text-to-chart retrieval, chart summarization, chart-to-table conversion, chart description, and chart question answering. Using ChartCards, we further construct MetaChart, a large-scale high-quality dataset containing 10,862 data tables, 85K charts, and 170 K high-quality chart captions. We validate the dataset through qualitative crowdsourcing evaluations and quantitative fine-tuning experiments across various chart understanding tasks. Fine-tuning six different models on MetaChart resulted in an average performance improvement of 5% across all tasks. The most notable improvements are seen in text-to-chart retrieval and chart-to-table tasks, with Long-CLIP and Llama 3.2-11B achieving improvements of 17% and 28%, respectively.
Abstract:Charts are crucial for data analysis and decision-making.Text-to-chart retrieval systems have become increasingly important for Business Intelligence (BI), where users need to find relevant charts that match their analytical needs. These needs can be categorized into precise queries that are well-specified and fuzzy queries that are more exploratory -- both require understanding the semantics and context of the charts. However, existing text-to-chart retrieval solutions often fail to capture the semantic content and contextual information of charts, primarily due to the lack of comprehensive metadata (or semantic insights). To address this limitation, we propose a training data development pipeline that automatically synthesizes hierarchical semantic insights for charts, covering visual patterns (visual-oriented), statistical properties (statistics-oriented), and practical applications (task-oriented), which produces 207,498 semantic insights for 69,166 charts. Based on these, we train a CLIP-based model named ChartFinder to learn better representations of charts for text-to-chart retrieval. Our method leverages rich semantic insights during the training phase to develop a model that understands both visual and semantic aspects of charts.To evaluate text-to-chart retrieval performance, we curate the first benchmark, CRBench, for this task with 21,862 charts and 326 text queries from real-world BI applications, with ground-truth labels verified by the crowd workers.Experiments show that ChartFinder significantly outperforms existing methods in text-to-chart retrieval tasks across various settings. For precise queries, ChartFinder achieves up to 66.9% NDCG@10, which is 11.58% higher than state-of-the-art models. In fuzzy query tasks, our method also demonstrates consistent improvements, with an average increase of 5% across nearly all metrics.
Abstract:In this paper, we explore a forward-thinking question: Is GPT-4V effective at low-level data analysis tasks on charts? To this end, we first curate a large-scale dataset, named ChartInsights, consisting of 89,388 quartets (chart, task, question, answer) and covering 10 widely-used low-level data analysis tasks on 7 chart types. Firstly, we conduct systematic evaluations to understand the capabilities and limitations of 18 advanced MLLMs, which include 12 open-source models and 6 closed-source models. Starting with a standard textual prompt approach, the average accuracy rate across the 18 MLLMs is 36.17%. Among all the models, GPT-4V achieves the highest accuracy, reaching 56.13%. To understand the limitations of multimodal large models in low-level data analysis tasks, we have designed various experiments to conduct an in-depth test of capabilities of GPT-4V. We further investigate how visual modifications to charts, such as altering visual elements (e.g. changing color schemes) and introducing perturbations (e.g. adding image noise), affect performance of GPT-4V. Secondly, we present 12 experimental findings. These findings suggest potential of GPT-4V to revolutionize interaction with charts and uncover the gap between human analytic needs and capabilities of GPT-4V. Thirdly, we propose a novel textual prompt strategy, named Chain-of-Charts, tailored for low-level analysis tasks, which boosts model performance by 24.36%, resulting in an accuracy of 80.49%. Furthermore, by incorporating a visual prompt strategy that directs attention of GPT-4V to question-relevant visual elements, we further improve accuracy to 83.83%. Our study not only sheds light on the capabilities and limitations of GPT-4V in low-level data analysis tasks but also offers valuable insights for future research.