Topic:Spelling Correction
What is Spelling Correction? Spelling correction is the process of automatically correcting misspelled words in text data.
Papers and Code
Sep 04, 2025
Abstract:Query spelling correction is an important function of modern search engines since it effectively helps users express their intentions clearly. With the growing popularity of speech search driven by Automated Speech Recognition (ASR) systems, this paper introduces a novel method named Contextualized Token Discrimination (CTD) to conduct effective speech query correction. In CTD, we first employ BERT to generate token-level contextualized representations and then construct a composition layer to enhance semantic information. Finally, we produce the correct query according to the aggregated token representation, correcting the incorrect tokens by comparing the original token representations and the contextualized representations. Extensive experiments demonstrate the superior performance of our proposed method across all metrics, and we further present a new benchmark dataset with erroneous ASR transcriptions to offer comprehensive evaluations for audio query correction.
Via

Jul 08, 2025
Abstract:The modern text-to-image diffusion models boom has opened a new era in digital content production as it has proven the previously unseen ability to produce photorealistic and stylistically diverse imagery based on the semantics of natural-language descriptions. However, the consistent disadvantage of these models is that they cannot generate readable, meaningful, and correctly spelled text in generated images, which significantly limits the use of practical purposes like advertising, learning, and creative design. This paper introduces a new framework, namely Glyph-Conditioned Diffusion with Character-Aware Attention (GCDA), using which a typical diffusion backbone is extended by three well-designed modules. To begin with, the model has a dual-stream text encoder that encodes both semantic contextual information and explicit glyph representations, resulting in a character-aware representation of the input text that is rich in nature. Second, an attention mechanism that is aware of the character is proposed with a new attention segregation loss that aims to limit the attention distribution of each character independently in order to avoid distortion artifacts. Lastly, GCDA has an OCR-in-the-loop fine-tuning phase, where a full text perceptual loss, directly optimises models to be legible and accurately spell. Large scale experiments to benchmark datasets, such as MARIO-10M and T2I-CompBench, reveal that GCDA sets a new state-of-the-art on all metrics, with better character based metrics on text rendering (Character Error Rate: 0.08 vs 0.21 for the previous best; Word Error Rate: 0.15 vs 0.25), human perception, and comparable image synthesis quality on high-fidelity (FID: 14.3).
* 30 pages
Via

Jun 26, 2025
Abstract:Real-world live retrieval-augmented generation (RAG) systems face significant challenges when processing user queries that are often noisy, ambiguous, and contain multiple intents. While RAG enhances large language models (LLMs) with external knowledge, current systems typically struggle with such complex inputs, as they are often trained or evaluated on cleaner data. This paper introduces Omni-RAG, a novel framework designed to improve the robustness and effectiveness of RAG systems in live, open-domain settings. Omni-RAG employs LLM-assisted query understanding to preprocess user inputs through three key modules: (1) Deep Query Understanding and Decomposition, which utilizes LLMs with tailored prompts to denoise queries (e.g., correcting spelling errors) and decompose multi-intent queries into structured sub-queries; (2) Intent-Aware Knowledge Retrieval, which performs retrieval for each sub-query from a corpus (i.e., FineWeb using OpenSearch) and aggregates the results; and (3) Reranking and Generation, where a reranker (i.e., BGE) refines document selection before a final response is generated by an LLM (i.e., Falcon-10B) using a chain-of-thought prompt. Omni-RAG aims to bridge the gap between current RAG capabilities and the demands of real-world applications, such as those highlighted by the SIGIR 2025 LiveRAG Challenge, by robustly handling complex and noisy queries.
* Accepted at SIGIR 2025 LiveRAG Workshop (Oral Presentation)
Via

May 28, 2025
Abstract:This study illustrates how incorporating feedback-oriented annotations into the scoring pipeline can enhance the accuracy of automated essay scoring (AES). This approach is demonstrated with the Persuasive Essays for Rating, Selecting, and Understanding Argumentative and Discourse Elements (PERSUADE) corpus. We integrate two types of feedback-driven annotations: those that identify spelling and grammatical errors, and those that highlight argumentative components. To illustrate how this method could be applied in real-world scenarios, we employ two LLMs to generate annotations -- a generative language model used for spell-correction and an encoder-based token classifier trained to identify and mark argumentative elements. By incorporating annotations into the scoring process, we demonstrate improvements in performance using encoder-based large language models fine-tuned as classifiers.
* 10 pages, AIME-Con Conference Submission
Via

May 14, 2025
Abstract:Multi-level Tibetan spelling correction addresses errors at both the character and syllable levels within a unified model. Existing methods focus mainly on single-level correction and lack effective integration of both levels. Moreover, there are no open-source datasets or augmentation methods tailored for this task in Tibetan. To tackle this, we propose a data augmentation approach using unlabeled text to generate multi-level corruptions, and introduce TiSpell, a semi-masked model capable of correcting both character- and syllable-level errors. Although syllable-level correction is more challenging due to its reliance on global context, our semi-masked strategy simplifies this process. We synthesize nine types of corruptions on clean sentences to create a robust training set. Experiments on both simulated and real-world data demonstrate that TiSpell, trained on our dataset, outperforms baseline models and matches the performance of state-of-the-art approaches, confirming its effectiveness.
* 14 pages, 7 figures
Via

May 16, 2025
Abstract:This paper explores syllable sequence prediction in Abugida languages using Transformer-based models, focusing on six languages: Bengali, Hindi, Khmer, Lao, Myanmar, and Thai, from the Asian Language Treebank (ALT) dataset. We investigate the reconstruction of complete syllable sequences from various incomplete input types, including consonant sequences, vowel sequences, partial syllables (with random character deletions), and masked syllables (with fixed syllable deletions). Our experiments reveal that consonant sequences play a critical role in accurate syllable prediction, achieving high BLEU scores, while vowel sequences present a significantly greater challenge. The model demonstrates robust performance across tasks, particularly in handling partial and masked syllable reconstruction, with strong results for tasks involving consonant information and syllable masking. This study advances the understanding of sequence prediction for Abugida languages and provides practical insights for applications such as text prediction, spelling correction, and data augmentation in these scripts.
* 14 pages, 2 figures, 6 tables, 1 listing
Via

May 14, 2025
Abstract:Recent advancements in large language models (LLMs) demonstrate exceptional Chinese text processing capabilities, particularly in Chinese Spelling Correction (CSC). While LLMs outperform traditional BERT-based models in accuracy and robustness, challenges persist in reliability and generalization. This paper proposes CEC-Zero, a novel reinforcement learning (RL) framework enabling LLMs to self-correct through autonomous error strategy learning without external supervision. By integrating RL with LLMs' generative power, the method eliminates dependency on annotated data or auxiliary models. Experiments reveal RL-enhanced LLMs achieve industry-viable accuracy and superior cross-domain generalization, offering a scalable solution for reliability optimization in Chinese NLP applications. This breakthrough facilitates LLM deployment in practical Chinese text correction scenarios while establishing a new paradigm for self-improving language models.
Via

Apr 26, 2025
Abstract:Chinese Spelling Correction (CSC) aims to detect and correct erroneous tokens in sentences. While Large Language Models (LLMs) have shown remarkable success in identifying and rectifying potential errors, they often struggle with maintaining consistent output lengths and adapting to domain-specific corrections. Furthermore, existing CSC task impose rigid constraints requiring input and output lengths to be identical, limiting their applicability. In this work, we extend traditional CSC to variable-length correction scenarios, including Chinese Splitting Error Correction (CSEC) and ASR N-best Error Correction. To address domain adaptation and length consistency, we propose MTCSC (Multi-Turn CSC) framework based on RAG enhanced with a length reflection mechanism. Our approach constructs a retrieval database from domain-specific training data and dictionaries, fine-tuning retrievers to optimize performance for error-containing inputs. Additionally, we introduce a multi-source combination strategy with iterative length reflection to ensure output length fidelity. Experiments across diverse domain datasets demonstrate that our method significantly outperforms current approaches in correction quality, particularly in handling domain-specific and variable-length error correction tasks.
* 12 pages, 2 figures
Via

Apr 10, 2025
Abstract:The Chinese Spelling Correction (CSC) task focuses on detecting and correcting spelling errors in sentences. Current research primarily explores two approaches: traditional multimodal pre-trained models and large language models (LLMs). However, LLMs face limitations in CSC, particularly over-correction, making them suboptimal for this task. While existing studies have investigated the use of phonetic and graphemic information in multimodal CSC models, effectively leveraging these features to enhance correction performance remains a challenge. To address this, we propose the Multimodal Analysis for Character Usage (\textbf{MACU}) experiment, identifying potential improvements for multimodal correctison. Based on empirical findings, we introduce \textbf{NamBert}, a novel multimodal model for Chinese spelling correction. Experiments on benchmark datasets demonstrate NamBert's superiority over SOTA methods. We also conduct a comprehensive comparison between NamBert and LLMs, systematically evaluating their strengths and limitations in CSC. Our code and model are available at https://github.com/iioSnail/NamBert.
Via

Jun 07, 2025
Abstract:In the era of large language models (LLMs), the Chinese Spelling Check (CSC) task has seen various LLM methods developed, yet their performance remains unsatisfactory. In contrast, fine-tuned BERT-based models, relying on high-quality in-domain data, show excellent performance but suffer from edit pattern overfitting. This paper proposes a novel dynamic mixture approach that effectively combines the probability distributions of small models and LLMs during the beam search decoding phase, achieving a balanced enhancement of precise corrections from small models and the fluency of LLMs. This approach also eliminates the need for fine-tuning LLMs, saving significant time and resources, and facilitating domain adaptation. Comprehensive experiments demonstrate that our mixture approach significantly boosts error correction capabilities, achieving state-of-the-art results across multiple datasets. Our code is available at https://github.com/zhqiao-nlp/MSLLM.
Via
