Topic:Spelling Correction
What is Spelling Correction? Spelling correction is the process of automatically correcting misspelled words in text data.
Papers and Code
Apr 26, 2025
Abstract:Chinese Spelling Correction (CSC) aims to detect and correct erroneous tokens in sentences. While Large Language Models (LLMs) have shown remarkable success in identifying and rectifying potential errors, they often struggle with maintaining consistent output lengths and adapting to domain-specific corrections. Furthermore, existing CSC task impose rigid constraints requiring input and output lengths to be identical, limiting their applicability. In this work, we extend traditional CSC to variable-length correction scenarios, including Chinese Splitting Error Correction (CSEC) and ASR N-best Error Correction. To address domain adaptation and length consistency, we propose MTCSC (Multi-Turn CSC) framework based on RAG enhanced with a length reflection mechanism. Our approach constructs a retrieval database from domain-specific training data and dictionaries, fine-tuning retrievers to optimize performance for error-containing inputs. Additionally, we introduce a multi-source combination strategy with iterative length reflection to ensure output length fidelity. Experiments across diverse domain datasets demonstrate that our method significantly outperforms current approaches in correction quality, particularly in handling domain-specific and variable-length error correction tasks.
* 12 pages, 2 figures
Via

Apr 10, 2025
Abstract:The Chinese Spelling Correction (CSC) task focuses on detecting and correcting spelling errors in sentences. Current research primarily explores two approaches: traditional multimodal pre-trained models and large language models (LLMs). However, LLMs face limitations in CSC, particularly over-correction, making them suboptimal for this task. While existing studies have investigated the use of phonetic and graphemic information in multimodal CSC models, effectively leveraging these features to enhance correction performance remains a challenge. To address this, we propose the Multimodal Analysis for Character Usage (\textbf{MACU}) experiment, identifying potential improvements for multimodal correctison. Based on empirical findings, we introduce \textbf{NamBert}, a novel multimodal model for Chinese spelling correction. Experiments on benchmark datasets demonstrate NamBert's superiority over SOTA methods. We also conduct a comprehensive comparison between NamBert and LLMs, systematically evaluating their strengths and limitations in CSC. Our code and model are available at https://github.com/iioSnail/NamBert.
Via

Apr 05, 2025
Abstract:Retriever-augmented generation (RAG) has become a widely adopted approach for enhancing the factual accuracy of large language models (LLMs). While current benchmarks evaluate the performance of RAG methods from various perspectives, they share a common assumption that user queries used for retrieval are error-free. However, in real-world interactions between users and LLMs, query entry errors such as keyboard proximity errors, visual similarity errors, and spelling errors are frequent. The impact of these errors on current RAG methods against such errors remains largely unexplored. To bridge this gap, we propose QE-RAG, the first robust RAG benchmark designed specifically to evaluate performance against query entry errors. We augment six widely used datasets by injecting three common types of query entry errors into randomly selected user queries at rates of 20\% and 40\%, simulating typical user behavior in real-world scenarios. We analyze the impact of these errors on LLM outputs and find that corrupted queries degrade model performance, which can be mitigated through query correction and training a robust retriever for retrieving relevant documents. Based on these insights, we propose a contrastive learning-based robust retriever training method and a retrieval-augmented query correction method. Extensive in-domain and cross-domain experiments reveal that: (1) state-of-the-art RAG methods including sequential, branching, and iterative methods, exhibit poor robustness to query entry errors; (2) our method significantly enhances the robustness of RAG when handling query entry errors and it's compatible with existing RAG methods, further improving their robustness.
Via

Mar 04, 2025
Abstract:Deep learning has shown promising performance on various machine learning tasks. Nevertheless, the uninterpretability of deep learning models severely restricts the usage domains that require feature explanations, such as text correction. Therefore, a novel interpretable deep learning model (named AxBERT) is proposed for Chinese spelling correction by aligning with an associative knowledge network (AKN). Wherein AKN is constructed based on the co-occurrence relations among Chinese characters, which denotes the interpretable statistic logic contrasted with uninterpretable BERT logic. And a translator matrix between BERT and AKN is introduced for the alignment and regulation of the attention component in BERT. In addition, a weight regulator is designed to adjust the attention distributions in BERT to appropriately model the sentence semantics. Experimental results on SIGHAN datasets demonstrate that AxBERT can achieve extraordinary performance, especially upon model precision compared to baselines. Our interpretable analysis, together with qualitative reasoning, can effectively illustrate the interpretability of AxBERT.
Via

Feb 17, 2025
Abstract:Chinese Spelling Correction (CSC) is a critical task in natural language processing, aimed at detecting and correcting spelling errors in Chinese text. This survey provides a comprehensive overview of CSC, tracing its evolution from pre-trained language models to large language models, and critically analyzing their respective strengths and weaknesses in this domain. Moreover, we further present a detailed examination of existing benchmark datasets, highlighting their inherent challenges and limitations. Finally, we propose promising future research directions, particularly focusing on leveraging the potential of LLMs and their reasoning capabilities for improved CSC performance. To the best of our knowledge, this is the first comprehensive survey dedicated to the field of CSC. We believe this work will serve as a valuable resource for researchers, fostering a deeper understanding of the field and inspiring future advancements.
Via

Feb 21, 2025
Abstract:Chinese spelling correction (CSC) is a crucial task that aims to correct character errors in Chinese text. While conventional CSC focuses on character substitution errors caused by mistyping, two other common types of character errors, missing and redundant characters, have received less attention. These errors are often excluded from CSC datasets during the annotation process or ignored during evaluation, even when they have been annotated. This issue limits the practicality of the CSC task. To address this issue, we introduce the task of General Chinese Character Error Correction (C2EC), which focuses on all three types of character errors. We construct a high-quality C2EC benchmark by combining and manually verifying data from CCTC and Lemon datasets. We extend the training-free prompt-free CSC method to C2EC by using Levenshtein distance for handling length changes and leveraging an additional prompt-based large language model (LLM) to improve performance. Experiments show that our method enables a 14B-parameter LLM to be on par with models nearly 50 times larger on both conventional CSC and C2EC tasks, without any fine-tuning.
* 25 pages, 12 figures
Via

Feb 12, 2025
Abstract:Grammatical error correction (GEC) aims to correct grammatical, spelling, and semantic errors in natural language text. With the growing of large language models (LLMs), direct text generation has gradually become the focus of the GEC methods, and few-shot in-context learning presents a cost-effective solution. However, selecting effective in-context examples remains challenging, as the similarity between input texts does not necessarily correspond to similar grammatical error patterns. In this paper, we propose a novel retrieval method based on natural language grammatical error explanations (GEE) to address this issue. Our method retrieves suitable few-shot demonstrations by matching the GEE of the test input with that of pre-constructed database samples, where explanations for erroneous samples are generated by LLMs. We conducted multilingual GEC few-shot experiments on both major open-source and closed-source LLMs. Experiments across five languages show that our method outperforms existing semantic and BM25-based retrieval techniques, without requiring additional training or language adaptation. This also suggests that matching error patterns is key to selecting examples.
* Accepted by NAACL 2025 main conference
Via

Jan 27, 2025
Abstract:In this paper, we present a system that uses a Large Language Model (LLM) to perform grammar and spelling correction as a component of Quality Assurance (QA) for texts generated by NLG systems, which is important for text production in real-world scenarios. Evaluating the results of the system on work-in-progress sports news texts in three languages, we show that it is able to deliver acceptable corrections.
Via

Jan 24, 2025
Abstract:Detecting AI-generated text, especially in short-context documents, is difficult because there is not enough context for accurate classification. This paper presents a new teacher-student model that uses domain adaptation and data augmentation to solve these problems. The teacher model, which combines DeBERTa-v3-large and Mamba-790m, learns semantic knowledge through domain-specific fine-tuning. The student model handles short-context text more efficiently. The system uses a Mean Squared Error (MSE) loss function to guide the student's learning, improving both accuracy and efficiency. Also, data augmentation methods like spelling correction and error injection make the model more robust. Experimental results show that this approach works better than baseline methods, proving its usefulness for real-time AI-generated text detection and other text classification tasks.
Via

Dec 23, 2024
Abstract:Unnatural text correction aims to automatically detect and correct spelling errors or adversarial perturbation errors in sentences. Existing methods typically rely on fine-tuning or adversarial training to correct errors, which have achieved significant success. However, these methods exhibit poor generalization performance due to the difference in data distribution between training data and real-world scenarios, known as the exposure bias problem. In this paper, we propose a self-correct adversarial training framework for \textbf{L}earn\textbf{I}ng from \textbf{MI}s\textbf{T}akes (\textbf{LIMIT}), which is a task- and model-independent framework to correct unnatural errors or mistakes. Specifically, we fully utilize errors generated by the model that are actively exposed during the inference phase, i.e., predictions that are inconsistent with the target. This training method not only simulates potential errors in real application scenarios, but also mitigates the exposure bias of the traditional training process. Meanwhile, we design a novel decoding intervention strategy to maintain semantic consistency. Extensive experimental results on Chinese unnatural text error correction datasets show that our proposed method can correct multiple forms of errors and outperforms the state-of-the-art text correction methods. In addition, extensive results on Chinese and English datasets validate that LIMIT can serve as a plug-and-play defense module and can extend to new models and datasets without further training.
* AAAI 2025
Via
