No-reference image quality assessment is the process of evaluating the quality of an image without a reference image for comparison.
We present the Multi-Scale Spatial Channel Attention Network (MS-SCANet), a transformer-based architecture designed for no-reference image quality assessment (IQA). MS-SCANet features a dual-branch structure that processes images at multiple scales, effectively capturing both fine and coarse details, an improvement over traditional single-scale methods. By integrating tailored spatial and channel attention mechanisms, our model emphasizes essential features while minimizing computational complexity. A key component of MS-SCANet is its cross-branch attention mechanism, which enhances the integration of features across different scales, addressing limitations in previous approaches. We also introduce two new consistency loss functions, Cross-Branch Consistency Loss and Adaptive Pooling Consistency Loss, which maintain spatial integrity during feature scaling, outperforming conventional linear and bilinear techniques. Extensive evaluations on datasets like KonIQ-10k, LIVE, LIVE Challenge, and CSIQ show that MS-SCANet consistently surpasses state-of-the-art methods, offering a robust framework with stronger correlations with subjective human scores.
Text-to-image generative models have made remarkable progress in producing high-quality visual content from textual descriptions, yet concerns remain about how they represent social groups. While characteristics like gender and race have received increasing attention, disability representations remain underexplored. This study investigates how people with disabilities are represented in AI-generated images by analyzing outputs from Stable Diffusion XL and DALL-E 3 using a structured prompt design. We analyze disability representations by comparing image similarities between generic disability prompts and prompts referring to specific disability categories. Moreover, we evaluate how mitigation strategies influence disability portrayals, with a focus on assessing affective framing through sentiment polarity analysis, combining both automatic and human evaluation. Our findings reveal persistent representational imbalances and highlight the need for continuous evaluation and refinement of generative models to foster more diverse and inclusive portrayals of disability.
In-Image Machine Translation (IIMT) powers cross-border e-commerce product listings; existing research focuses on machine translation evaluation, while visual rendering quality is critical for user engagement. When facing context-dense product imagery and multimodal defects, current reference-based methods (e.g., SSIM, FID) lack explainability, while model-as-judge approaches lack domain-grounded, fine-grained reward signals. To bridge this gap, we introduce Vectra, to the best of our knowledge, the first reference-free, MLLM-driven visual quality assessment framework for e-commerce IIMT. Vectra comprises three components: (1) Vectra Score, a multidimensional quality metric system that decomposes visual quality into 14 interpretable dimensions, with spatially-aware Defect Area Ratio (DAR) quantification to reduce annotation ambiguity; (2) Vectra Dataset, constructed from 1.1M real-world product images via diversity-aware sampling, comprising a 2K benchmark for system evaluation, 30K reasoning-based annotations for instruction tuning, and 3.5K expert-labeled preferences for alignment and evaluation; and (3) Vectra Model, a 4B-parameter MLLM that generates both quantitative scores and diagnostic reasoning. Experiments demonstrate that Vectra achieves state-of-the-art correlation with human rankings, and our model outperforms leading MLLMs, including GPT-5 and Gemini-3, in scoring performance. The dataset and model will be released upon acceptance.
Parallel imaging techniques reduce magnetic resonance imaging (MRI) scan time but image quality degrades as the acceleration factor increases. In clinical practice, conservative acceleration factors are chosen because no mechanism exists to automatically assess the diagnostic quality of undersampled reconstructions. This work introduces a general framework for pixel-wise uncertainty quantification in parallel MRI reconstructions, enabling automatic identification of unreliable regions without access to any ground-truth reference image. Our method integrates conformal quantile regression with image reconstruction methods to estimate statistically rigorous pixel-wise uncertainty intervals. We trained and evaluated our model on Cartesian undersampled brain and knee data obtained from the fastMRI dataset using acceleration factors ranging from 2 to 10. An end-to-end Variational Network was used for image reconstruction. Quantitative experiments demonstrate strong agreement between predicted uncertainty maps and true reconstruction error. Using our method, the corresponding Pearson correlation coefficient was higher than 90% at acceleration levels at and above four-fold; whereas it dropped to less than 70% when the uncertainty was computed using a simpler a heuristic notion (magnitude of the residual). Qualitative examples further show the uncertainty maps based on quantile regression capture the magnitude and spatial distribution of reconstruction errors across acceleration factors, with regions of elevated uncertainty aligning with pathologies and artifacts. The proposed framework enables evaluation of reconstruction quality without access to fully-sampled ground-truth reference images. It represents a step toward adaptive MRI acquisition protocols that may be able to dynamically balance scan time and diagnostic reliability.
Large Multimodal Models (LMMs) have recently shown remarkable promise in low-level visual perception tasks, particularly in Image Quality Assessment (IQA), demonstrating strong zero-shot capability. However, achieving state-of-the-art performance often requires computationally expensive fine-tuning methods, which aim to align the distribution of quality-related token in output with image quality levels. Inspired by recent training-free works for LMM, we introduce IQARAG, a novel, training-free framework that enhances LMMs' IQA ability. IQARAG leverages Retrieval-Augmented Generation (RAG) to retrieve some semantically similar but quality-variant reference images with corresponding Mean Opinion Scores (MOSs) for input image. These retrieved images and input image are integrated into a specific prompt. Retrieved images provide the LMM with a visual perception anchor for IQA task. IQARAG contains three key phases: Retrieval Feature Extraction, Image Retrieval, and Integration & Quality Score Generation. Extensive experiments across multiple diverse IQA datasets, including KADID, KonIQ, LIVE Challenge, and SPAQ, demonstrate that the proposed IQARAG effectively boosts the IQA performance of LMMs, offering a resource-efficient alternative to fine-tuning for quality assessment.
Background: Deep learning superresolution (SR) may enhance musculoskeletal MR image quality, but its diagnostic value in knee imaging at 7T is unclear. Objectives: To compare image quality and diagnostic performance of SR, low-resolution (LR), and high-resolution (HR) 7T knee MRI. Methods: In this prospective study, 42 participants underwent 7T knee MRI with LR (0.8*0.8*2 mm3) and HR (0.4*0.4*2 mm3) sequences. SR images were generated from LR data using a Hybrid Attention Transformer model. Three radiologists assessed image quality, anatomic conspicuity, and detection of knee pathologies. Arthroscopy served as reference in 10 cases. Results: SR images showed higher overall quality than LR (median score 5 vs 4, P<.001) and lower noise than HR (5 vs 4, P<.001). Visibility of cartilage, menisci, and ligaments was superior in SR and HR compared to LR (P<.001). Detection rates and diagnostic performance (sensitivity, specificity, AUC) for intra-articular pathology were similar across image types (P>=.095). Conclusions: Deep learning superresolution improved subjective image quality in 7T knee MRI but did not increase diagnostic accuracy compared with standard LR imaging.
Blind Image Quality Assessment (BIQA) has advanced significantly through deep learning, but the scarcity of large-scale labeled datasets remains a challenge. While synthetic data offers a promising solution, models trained on existing synthetic datasets often show limited generalization ability. In this work, we make a key observation that representations learned from synthetic datasets often exhibit a discrete and clustered pattern that hinders regression performance: features of high-quality images cluster around reference images, while those of low-quality images cluster based on distortion types. Our analysis reveals that this issue stems from the distribution of synthetic data rather than model architecture. Consequently, we introduce a novel framework SynDR-IQA, which reshapes synthetic data distribution to enhance BIQA generalization. Based on theoretical derivations of sample diversity and redundancy's impact on generalization error, SynDR-IQA employs two strategies: distribution-aware diverse content upsampling, which enhances visual diversity while preserving content distribution, and density-aware redundant cluster downsampling, which balances samples by reducing the density of densely clustered areas. Extensive experiments across three cross-dataset settings (synthetic-to-authentic, synthetic-to-algorithmic, and synthetic-to-synthetic) demonstrate the effectiveness of our method. The code is available at https://github.com/Li-aobo/SynDR-IQA.
Existing AGIQA models typically estimate image quality by measuring and aggregating the similarities between image embeddings and text embeddings derived from multi-grade quality descriptions. Although effective, we observe that such similarity distributions across grades usually exhibit multimodal patterns. For instance, an image embedding may show high similarity to both "excellent" and "poor" grade descriptions while deviating from the "good" one. We refer to this phenomenon as "semantic drift", where semantic inconsistencies between text embeddings and their intended descriptions undermine the reliability of text-image shared-space learning. To mitigate this issue, we draw inspiration from psychometrics and propose an improved Graded Response Model (GRM) for AGIQA. The GRM is a classical assessment model that categorizes a subject's ability across grades using test items with various difficulty levels. This paradigm aligns remarkably well with human quality rating, where image quality can be interpreted as an image's ability to meet various quality grades. Building on this philosophy, we design a two-branch quality grading module: one branch estimates image ability while the other constructs multiple difficulty levels. To ensure monotonicity in difficulty levels, we further model difficulty generation in an arithmetic manner, which inherently enforces a unimodal and interpretable quality distribution. Our Arithmetic GRM based Quality Grading (AGQG) module enjoys a plug-and-play advantage, consistently improving performance when integrated into various state-of-the-art AGIQA frameworks. Moreover, it also generalizes effectively to both natural and screen content image quality assessment, revealing its potential as a key component in future IQA models.
Optical and Synthetic Aperture Radar (SAR) fusion-based object detection has attracted significant research interest in remote sensing, as these modalities provide complementary information for all-weather monitoring. However, practical deployment is severely limited by inherent challenges. Due to distinct imaging mechanisms, temporal asynchrony, and registration difficulties, obtaining well-aligned optical-SAR image pairs remains extremely difficult, frequently resulting in missing or degraded modality data. Although recent approaches have attempted to address this issue, they still suffer from limited robustness to random missing modalities and lack effective mechanisms to ensure consistent performance improvement in fusion-based detection. To address these limitations, we propose a novel Quality-Aware Dynamic Fusion Network (QDFNet) for robust optical-SAR object detection. Our proposed method leverages learnable reference tokens to dynamically assess feature reliability and guide adaptive fusion in the presence of missing modalities. In particular, we design a Dynamic Modality Quality Assessment (DMQA) module that employs learnable reference tokens to iteratively refine feature reliability assessment, enabling precise identification of degraded regions and providing quality guidance for subsequent fusion. Moreover, we develop an Orthogonal Constraint Normalization Fusion (OCNF) module that employs orthogonal constraints to preserve modality independence while dynamically adjusting fusion weights based on reliability scores, effectively suppressing unreliable feature propagation. Extensive experiments on the SpaceNet6-OTD and OGSOD-2.0 datasets demonstrate the superiority and effectiveness of QDFNet compared to state-of-the-art methods, particularly under partial modality corruption or missing data scenarios.
Recent efforts have repurposed the Contrastive Language-Image Pre-training (CLIP) model for No-Reference Image Quality Assessment (NR-IQA) by measuring the cosine similarity between the image embedding and textual prompts such as "a good photo" or "a bad photo." However, this semantic similarity overlooks a critical yet underexplored cue: the magnitude of the CLIP image features, which we empirically find to exhibit a strong correlation with perceptual quality. In this work, we introduce a novel adaptive fusion framework that complements cosine similarity with a magnitude-aware quality cue. Specifically, we first extract the absolute CLIP image features and apply a Box-Cox transformation to statistically normalize the feature distribution and mitigate semantic sensitivity. The resulting scalar summary serves as a semantically-normalized auxiliary cue that complements cosine-based prompt matching. To integrate both cues effectively, we further design a confidence-guided fusion scheme that adaptively weighs each term according to its relative strength. Extensive experiments on multiple benchmark IQA datasets demonstrate that our method consistently outperforms standard CLIP-based IQA and state-of-the-art baselines, without any task-specific training.