Abstract:Livestreaming has become increasingly prevalent in modern visual communication, where automatic camera quality tuning is essential for delivering superior user Quality of Experience (QoE). Such tuning requires accurate blind image quality assessment (BIQA) to guide parameter optimization decisions. Unfortunately, the existing BIQA models typically only predict an overall coarse-grained quality score, which cannot provide fine-grained perceptual guidance for precise camera parameter tuning. To bridge this gap, we first establish FGLive-10K, a comprehensive fine-grained BIQA database containing 10,185 high-resolution images captured under varying camera parameter configurations across diverse livestreaming scenarios. The dataset features 50,925 multi-attribute quality annotations and 19,234 fine-grained pairwise preference annotations. Based on FGLive-10K, we further develop TuningIQA, a fine-grained BIQA metric for livestreaming camera tuning, which integrates human-aware feature extraction and graph-based camera parameter fusion. Extensive experiments and comparisons demonstrate that TuningIQA significantly outperforms state-of-the-art BIQA methods in both score regression and fine-grained quality ranking, achieving superior performance when deployed for livestreaming camera tuning.
Abstract:Recent years have witnessed remarkable achievements in perceptual image restoration (IR), creating an urgent demand for accurate image quality assessment (IQA), which is essential for both performance comparison and algorithm optimization. Unfortunately, the existing IQA metrics exhibit inherent weakness for IR task, particularly when distinguishing fine-grained quality differences among restored images. To address this dilemma, we contribute the first-of-its-kind fine-grained image quality assessment dataset for image restoration, termed FGRestore, comprising 18,408 restored images across six common IR tasks. Beyond conventional scalar quality scores, FGRestore was also annotated with 30,886 fine-grained pairwise preferences. Based on FGRestore, a comprehensive benchmark was conducted on the existing IQA metrics, which reveal significant inconsistencies between score-based IQA evaluations and the fine-grained restoration quality. Motivated by these findings, we further propose FGResQ, a new IQA model specifically designed for image restoration, which features both coarse-grained score regression and fine-grained quality ranking. Extensive experiments and comparisons demonstrate that FGResQ significantly outperforms state-of-the-art IQA metrics. Codes and model weights have been released in https://pxf0429.github.io/FGResQ/
Abstract:Contrastive vision-language models, such as CLIP, have demonstrated excellent zero-shot capability across semantic recognition tasks, mainly attributed to the training on a large-scale I&1T (one Image with one Text) dataset. This kind of multimodal representations often blend semantic and perceptual elements, placing a particular emphasis on semantics. However, this could be problematic for popular tasks like image quality assessment (IQA) and conditional image generation (CIG), which typically need to have fine control on perceptual and semantic features. Motivated by the above facts, this paper presents a new multimodal disentangled representation learning framework, which leverages disentangled text to guide image disentanglement. To this end, we first build an I&2T (one Image with a perceptual Text and a semantic Text) dataset, which consists of disentangled perceptual and semantic text descriptions for an image. Then, the disentangled text descriptions are utilized as supervisory signals to disentangle pure perceptual representations from CLIP's original `coarse' feature space, dubbed DeCLIP. Finally, the decoupled feature representations are used for both image quality assessment (technical quality and aesthetic quality) and conditional image generation. Extensive experiments and comparisons have demonstrated the advantages of the proposed method on the two popular tasks. The dataset, code, and model will be available.
Abstract:Wide-angle video is favored for its wide viewing angle and ability to capture a large area of scenery, making it an ideal choice for sports and adventure recording. However, wide-angle video is prone to deformation, exposure and other distortions, resulting in poor video quality and affecting the perception and experience, which may seriously hinder its application in fields such as competitive sports. Up to now, few explorations focus on the quality assessment issue of wide-angle video. This deficiency primarily stems from the absence of a specialized dataset for wide-angle videos. To bridge this gap, we construct the first Multi-annotated and multi-modal Wide-angle Video quality assessment (MWV) dataset. Then, the performances of state-of-the-art video quality methods on the MWV dataset are investigated by inter-dataset testing and intra-dataset testing. Experimental results show that these methods impose significant limitations on their applicability.
Abstract:Recently, AI-generated images (AIGIs) created by given prompts (initial prompts) have garnered widespread attention. Nevertheless, due to technical nonproficiency, they often suffer from poor perception quality and Text-to-Image misalignment. Therefore, assessing the perception quality and alignment quality of AIGIs is crucial to improving the generative model's performance. Existing assessment methods overly rely on the initial prompts in the task prompt design and use the same prompts to guide both perceptual and alignment quality evaluation, overlooking the distinctions between the two tasks. To address this limitation, we propose a novel quality assessment method for AIGIs named TSP-MGS, which designs task-specific prompts and measures multi-granularity similarity between AIGIs and the prompts. Specifically, task-specific prompts are first constructed to describe perception and alignment quality degrees separately, and the initial prompt is introduced for detailed quality perception. Then, the coarse-grained similarity between AIGIs and task-specific prompts is calculated, which facilitates holistic quality awareness. In addition, to improve the understanding of AIGI details, the fine-grained similarity between the image and the initial prompt is measured. Finally, precise quality prediction is acquired by integrating the multi-granularity similarities. Experiments on the commonly used AGIQA-1K and AGIQA-3K benchmarks demonstrate the superiority of the proposed TSP-MGS.
Abstract:The annotation of blind image quality assessment (BIQA) is labor-intensive and time-consuming, especially for authentic images. Training on synthetic data is expected to be beneficial, but synthetically trained models often suffer from poor generalization in real domains due to domain gaps. In this work, we make a key observation that introducing more distortion types in the synthetic dataset may not improve or even be harmful to generalizing authentic image quality assessment. To solve this challenge, we propose distortion-guided unsupervised domain adaptation for BIQA (DGQA), a novel framework that leverages adaptive multi-domain selection via prior knowledge from distortion to match the data distribution between the source domains and the target domain, thereby reducing negative transfer from the outlier source domains. Extensive experiments on two cross-domain settings (synthetic distortion to authentic distortion and synthetic distortion to algorithmic distortion) have demonstrated the effectiveness of our proposed DGQA. Besides, DGQA is orthogonal to existing model-based BIQA methods, and can be used in combination with such models to improve performance with less training data.
Abstract:The highly abstract nature of image aesthetics perception (IAP) poses significant challenge for current multimodal large language models (MLLMs). The lack of human-annotated multi-modality aesthetic data further exacerbates this dilemma, resulting in MLLMs falling short of aesthetics perception capabilities. To address the above challenge, we first introduce a comprehensively annotated Aesthetic Multi-Modality Instruction Tuning (AesMMIT) dataset, which serves as the footstone for building multi-modality aesthetics foundation models. Specifically, to align MLLMs with human aesthetics perception, we construct a corpus-rich aesthetic critique database with 21,904 diverse-sourced images and 88K human natural language feedbacks, which are collected via progressive questions, ranging from coarse-grained aesthetic grades to fine-grained aesthetic descriptions. To ensure that MLLMs can handle diverse queries, we further prompt GPT to refine the aesthetic critiques and assemble the large-scale aesthetic instruction tuning dataset, i.e. AesMMIT, which consists of 409K multi-typed instructions to activate stronger aesthetic capabilities. Based on the AesMMIT database, we fine-tune the open-sourced general foundation models, achieving multi-modality Aesthetic Expert models, dubbed AesExpert. Extensive experiments demonstrate that the proposed AesExpert models deliver significantly better aesthetic perception performances than the state-of-the-art MLLMs, including the most advanced GPT-4V and Gemini-Pro-Vision. Source data will be available at https://github.com/yipoh/AesExpert.
Abstract:Existing free-energy guided No-Reference Image Quality Assessment (NR-IQA) methods still suffer from finding a balance between learning feature information at the pixel level of the image and capturing high-level feature information and the efficient utilization of the obtained high-level feature information remains a challenge. As a novel class of state-of-the-art (SOTA) generative model, the diffusion model exhibits the capability to model intricate relationships, enabling a comprehensive understanding of images and possessing a better learning of both high-level and low-level visual features. In view of these, we pioneer the exploration of the diffusion model into the domain of NR-IQA. Firstly, we devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images, incorporating nonlinear features obtained during the denoising process of the diffusion model, as high-level visual information. Secondly, two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information. These include the visual compensation guidance branch, grounded in the transformer architecture and noise embedding strategy, and the visual difference analysis branch, built on the ResNet architecture and the residual transposed attention block. Extensive experiments are conducted on seven public NR-IQA datasets, and the results demonstrate that the proposed model outperforms SOTA methods for NR-IQA.
Abstract:Opinion-Unaware Blind Image Quality Assessment (OU-BIQA) models aim to predict image quality without training on reference images and subjective quality scores. Thereinto, image statistical comparison is a classic paradigm, while the performance is limited by the representation ability of visual descriptors. Deep features as visual descriptors have advanced IQA in recent research, but they are discovered to be highly texture-biased and lack of shape-bias. On this basis, we find out that image shape and texture cues respond differently towards distortions, and the absence of either one results in an incomplete image representation. Therefore, to formulate a well-round statistical description for images, we utilize the shapebiased and texture-biased deep features produced by Deep Neural Networks (DNNs) simultaneously. More specifically, we design a Shape-Texture Adaptive Fusion (STAF) module to merge shape and texture information, based on which we formulate qualityrelevant image statistics. The perceptual quality is quantified by the variant Mahalanobis Distance between the inner and outer Shape-Texture Statistics (DSTS), wherein the inner and outer statistics respectively describe the quality fingerprints of the distorted image and natural images. The proposed DSTS delicately utilizes shape-texture statistical relations between different data scales in the deep domain, and achieves state-of-the-art (SOTA) quality prediction performance on images with artificial and authentic distortions.
Abstract:With collective endeavors, multimodal large language models (MLLMs) are undergoing a flourishing development. However, their performances on image aesthetics perception remain indeterminate, which is highly desired in real-world applications. An obvious obstacle lies in the absence of a specific benchmark to evaluate the effectiveness of MLLMs on aesthetic perception. This blind groping may impede the further development of more advanced MLLMs with aesthetic perception capacity. To address this dilemma, we propose AesBench, an expert benchmark aiming to comprehensively evaluate the aesthetic perception capacities of MLLMs through elaborate design across dual facets. (1) We construct an Expert-labeled Aesthetics Perception Database (EAPD), which features diversified image contents and high-quality annotations provided by professional aesthetic experts. (2) We propose a set of integrative criteria to measure the aesthetic perception abilities of MLLMs from four perspectives, including Perception (AesP), Empathy (AesE), Assessment (AesA) and Interpretation (AesI). Extensive experimental results underscore that the current MLLMs only possess rudimentary aesthetic perception ability, and there is still a significant gap between MLLMs and humans. We hope this work can inspire the community to engage in deeper explorations on the aesthetic potentials of MLLMs. Source data will be available at https://github.com/yipoh/AesBench.