We present Wid3R, a feed-forward neural network for visual geometry reconstruction that supports wide field-of-view camera models. Prior methods typically assume that input images are rectified or captured with pinhole cameras, since both their architectures and training datasets are tailored to perspective images only. These assumptions limit their applicability in real-world scenarios that use fisheye or panoramic cameras and often require careful calibration and undistortion. In contrast, Wid3R is a generalizable multi-view 3D estimation method that can model wide field-of-view camera types. Our approach leverages a ray representation with spherical harmonics and a novel camera model token within the network, enabling distortion-aware 3D reconstruction. Furthermore, Wid3R is the first multi-view foundation model to support feed-forward 3D reconstruction directly from 360 imagery. It demonstrates strong zero-shot robustness and consistently outperforms prior methods, achieving improvements of up to +77.33 on Stanford2D3D.
The recent paradigm shift in 3D vision led to the rise of foundation models with remarkable capabilities in 3D perception from uncalibrated images. However, extending these models to large-scale RGB stream 3D reconstruction remains challenging due to memory limitations. This work proposes S-MUSt3R, a simple and efficient pipeline that extends the limits of foundation models for monocular 3D reconstruction. Our approach addresses the scalability bottleneck of foundation models through a simple strategy of sequence segmentation followed by segment alignment and lightweight loop closure optimization. Without model retraining, we benefit from remarkable 3D reconstruction capacities of MUSt3R model and achieve trajectory and reconstruction performance comparable to traditional methods with more complex architecture. We evaluate S-MUSt3R on TUM, 7-Scenes and proprietary robot navigation datasets and show that S-MUSt3R runs successfully on long RGB sequences and produces accurate and consistent 3D reconstruction. Our results highlight the potential of leveraging the MUSt3R model for scalable monocular 3D scene in real-world settings, with an important advantage of making predictions directly in the metric space.
Accurate 3D representations of cardiac structures allow quantitative analysis of anatomy and function. In this work, we propose a method for reconstructing complete 3D cardiac shapes from segmentations of sparse planes in CT angiography (CTA) for application in 2D transthoracic echocardiography (TTE). Our method uses a neural implicit function to reconstruct the 3D shape of the cardiac chambers and left-ventricle myocardium from sparse CTA planes. To investigate the feasibility of achieving 3D reconstruction from 2D TTE, we select planes that mimic the standard apical 2D TTE views. During training, a multi-layer perceptron learns shape priors from 3D segmentations of the target structures in CTA. At test time, the network reconstructs 3D cardiac shapes from segmentations of TTE-mimicking CTA planes by jointly optimizing the latent code and the rigid transforms that map the observed planes into 3D space. For each heart, we simulate four realistic apical views, and we compare reconstructed multi-class volumes with the reference CTA volumes. On a held-out set of CTA segmentations, our approach achieves an average Dice coefficient of 0.86 $\pm$ 0.04 across all structures. Our method also achieves markedly lower volume errors than the clinical standard, Simpson's biplane rule: 4.88 $\pm$ 4.26 mL vs. 8.14 $\pm$ 6.04 mL, respectively, for the left ventricle; and 6.40 $\pm$ 7.37 mL vs. 37.76 $\pm$ 22.96 mL, respectively, for the left atrium. This suggests that our approach offers a viable route to more accurate 3D chamber quantification in 2D transthoracic echocardiography.
In modern dense 3D reconstruction, feed-forward systems (e.g., VGGT, pi3) focus on end-to-end matching and geometry prediction but do not explicitly output the novel view synthesis (NVS). Neural rendering-based approaches offer high-fidelity NVS and detailed geometry from posed images, yet they typically assume fixed camera poses and can be sensitive to pose errors. As a result, it remains non-trivial to obtain a single framework that can offer accurate poses, reliable depth, high-quality rendering, and accurate 3D surfaces from casually captured views. We present NeVStereo, a NeRF-driven NVS-stereo architecture that aims to jointly deliver camera poses, multi-view depth, novel view synthesis, and surface reconstruction from multi-view RGB-only inputs. NeVStereo combines NeRF-based NVS for stereo-friendly renderings, confidence-guided multi-view depth estimation, NeRF-coupled bundle adjustment for pose refinement, and an iterative refinement stage that updates both depth and the radiance field to improve geometric consistency. This design mitigated the common NeRF-based issues such as surface stacking, artifacts, and pose-depth coupling. Across indoor, outdoor, tabletop, and aerial benchmarks, our experiments indicate that NeVStereo achieves consistently strong zero-shot performance, with up to 36% lower depth error, 10.4% improved pose accuracy, 4.5% higher NVS fidelity, and state-of-the-art mesh quality (F1 91.93%, Chamfer 4.35 mm) compared to existing prestigious methods.
SAM3D enables scalable, open-world 3D reconstruction from complex scenes, yet its deployment is hindered by prohibitive inference latency. In this work, we conduct the \textbf{first systematic investigation} into its inference dynamics, revealing that generic acceleration strategies are brittle in this context. We demonstrate that these failures stem from neglecting the pipeline's inherent multi-level \textbf{heterogeneity}: the kinematic distinctiveness between shape and layout, the intrinsic sparsity of texture refinement, and the spectral variance across geometries. To address this, we present \textbf{Fast-SAM3D}, a training-free framework that dynamically aligns computation with instantaneous generation complexity. Our approach integrates three heterogeneity-aware mechanisms: (1) \textit{Modality-Aware Step Caching} to decouple structural evolution from sensitive layout updates; (2) \textit{Joint Spatiotemporal Token Carving} to concentrate refinement on high-entropy regions; and (3) \textit{Spectral-Aware Token Aggregation} to adapt decoding resolution. Extensive experiments demonstrate that Fast-SAM3D delivers up to \textbf{2.67$\times$} end-to-end speedup with negligible fidelity loss, establishing a new Pareto frontier for efficient single-view 3D generation. Our code is released in https://github.com/wlfeng0509/Fast-SAM3D.
Vision Foundation Models (VFMs) have achieved remarkable success when applied to various downstream 2D tasks. Despite their effectiveness, they often exhibit a critical lack of 3D awareness. To this end, we introduce Splat and Distill, a framework that instills robust 3D awareness into 2D VFMs by augmenting the teacher model with a fast, feed-forward 3D reconstruction pipeline. Given 2D features produced by a teacher model, our method first lifts these features into an explicit 3D Gaussian representation, in a feedforward manner. These 3D features are then ``splatted" onto novel viewpoints, producing a set of novel 2D feature maps used to supervise the student model, ``distilling" geometrically grounded knowledge. By replacing slow per-scene optimization of prior work with our feed-forward lifting approach, our framework avoids feature-averaging artifacts, creating a dynamic learning process where the teacher's consistency improves alongside that of the student. We conduct a comprehensive evaluation on a suite of downstream tasks, including monocular depth estimation, surface normal estimation, multi-view correspondence, and semantic segmentation. Our method significantly outperforms prior works, not only achieving substantial gains in 3D awareness but also enhancing the underlying semantic richness of 2D features. Project page is available at https://davidshavin4.github.io/Splat-and-Distill/
Reconstructing high-fidelity animatable 3D human avatars from monocular RGB videos remains challenging, particularly in unconstrained in-the-wild scenarios where camera parameters and human poses from off-the-shelf methods (e.g., COLMAP, HMR2.0) are often inaccurate. Splatting (3DGS) advances demonstrate impressive rendering quality and real-time performance, they critically depend on precise camera calibration and pose annotations, limiting their applicability in real-world settings. We present JOintGS, a unified framework that jointly optimizes camera extrinsics, human poses, and 3D Gaussian representations from coarse initialization through a synergistic refinement mechanism. Our key insight is that explicit foreground-background disentanglement enables mutual reinforcement: static background Gaussians anchor camera estimation via multi-view consistency; refined cameras improve human body alignment through accurate temporal correspondence; optimized human poses enhance scene reconstruction by removing dynamic artifacts from static constraints. We further introduce a temporal dynamics module to capture fine-grained pose-dependent deformations and a residual color field to model illumination variations. Extensive experiments on NeuMan and EMDB datasets demonstrate that JOintGS achieves superior reconstruction quality, with 2.1~dB PSNR improvement over state-of-the-art methods on NeuMan dataset, while maintaining real-time rendering. Notably, our method shows significantly enhanced robustness to noisy initialization compared to the baseline.Our source code is available at https://github.com/MiliLab/JOintGS.
3D editing has emerged as a critical research area to provide users with flexible control over 3D assets. While current editing approaches predominantly focus on 3D Gaussian Splatting or multi-view images, the direct editing of 3D meshes remains underexplored. Prior attempts, such as VoxHammer, rely on voxel-based representations that suffer from limited resolution and necessitate labor-intensive 3D mask. To address these limitations, we propose \textbf{VecSet-Edit}, the first pipeline that leverages the high-fidelity VecSet Large Reconstruction Model (LRM) as a backbone for mesh editing. Our approach is grounded on a analysis of the spatial properties in VecSet tokens, revealing that token subsets govern distinct geometric regions. Based on this insight, we introduce Mask-guided Token Seeding and Attention-aligned Token Gating strategies to precisely localize target regions using only 2D image conditions. Also, considering the difference between VecSet diffusion process versus voxel we design a Drift-aware Token Pruning to reject geometric outliers during the denoising process. Finally, our Detail-preserving Texture Baking module ensures that we not only preserve the geometric details of original mesh but also the textural information. More details can be found in our project page: https://github.com/BlueDyee/VecSet-Edit/tree/main
Existing methods for human motion control in video generation typically rely on either 2D poses or explicit 3D parametric models (e.g., SMPL) as control signals. However, 2D poses rigidly bind motion to the driving viewpoint, precluding novel-view synthesis. Explicit 3D models, though structurally informative, suffer from inherent inaccuracies (e.g., depth ambiguity and inaccurate dynamics) which, when used as a strong constraint, override the powerful intrinsic 3D awareness of large-scale video generators. In this work, we revisit motion control from a 3D-aware perspective, advocating for an implicit, view-agnostic motion representation that naturally aligns with the generator's spatial priors rather than depending on externally reconstructed constraints. We introduce 3DiMo, which jointly trains a motion encoder with a pretrained video generator to distill driving frames into compact, view-agnostic motion tokens, injected semantically via cross-attention. To foster 3D awareness, we train with view-rich supervision (i.e., single-view, multi-view, and moving-camera videos), forcing motion consistency across diverse viewpoints. Additionally, we use auxiliary geometric supervision that leverages SMPL only for early initialization and is annealed to zero, enabling the model to transition from external 3D guidance to learning genuine 3D spatial motion understanding from the data and the generator's priors. Experiments confirm that 3DiMo faithfully reproduces driving motions with flexible, text-driven camera control, significantly surpassing existing methods in both motion fidelity and visual quality.
Automatic calibration of multi-camera systems, namely the accurate estimation of spatial extrinsic parameters, is fundamental for 3D reconstruction, panoramic perception, and multi-view data fusion. Existing methods typically rely on calibration targets, explicit geometric modeling, or task-specific neural networks. Such approaches often exhibit limited robustness and applicability in complex dynamic environments or online scenarios, making them difficult to deploy in practical applications. To address this, this paper proposes GMAC, a multi-camera extrinsic estimation framework based on the implicit geometric representations learned by multi-view reconstruction networks. GMAC models extrinsics as global variables constrained by the latent multi-view geometric structure and prunes and structurally reconfigures existing networks so that their latent features can directly support extrinsic prediction through a lightweight regression head, without requiring a completely new network design. Furthermore, GMAC jointly optimizes cross-view reprojection consistency and multi-view cycle consistency, ensuring geometric coherence across cameras while improving prediction accuracy and optimization stability. Experiments on both synthetic and real-world multi-camera datasets demonstrate that GMAC achieves accurate and stable extrinsic estimation without explicit 3D reconstruction or manual calibration, providing a new solution for efficient deployment and online calibration of multi-camera systems.