Abstract:We present a novel-view rendering algorithm, Mode-GS, for ground-robot trajectory datasets. Our approach is based on using anchored Gaussian splats, which are designed to overcome the limitations of existing 3D Gaussian splatting algorithms. Prior neural rendering methods suffer from severe splat drift due to scene complexity and insufficient multi-view observation, and can fail to fix splats on the true geometry in ground-robot datasets. Our method integrates pixel-aligned anchors from monocular depths and generates Gaussian splats around these anchors using residual-form Gaussian decoders. To address the inherent scale ambiguity of monocular depth, we parameterize anchors with per-view depth-scales and employ scale-consistent depth loss for online scale calibration. Our method results in improved rendering performance, based on PSNR, SSIM, and LPIPS metrics, in ground scenes with free trajectory patterns, and achieves state-of-the-art rendering performance on the R3LIVE odometry dataset and the Tanks and Temples dataset.
Abstract:We present a new pipeline for acquiring a textured mesh in the wild with a single smartphone which offers access to images, depth maps, and valid poses. Our method first introduces an RGBD-aided structure from motion, which can yield filtered depth maps and refines camera poses guided by corresponding depth. Then, we adopt the neural implicit surface reconstruction method, which allows for high-quality mesh and develops a new training process for applying a regularization provided by classical multi-view stereo methods. Moreover, we apply a differentiable rendering to fine-tune incomplete texture maps and generate textures which are perceptually closer to the original scene. Our pipeline can be applied to any common objects in the real world without the need for either in-the-lab environments or accurate mask images. We demonstrate results of captured objects with complex shapes and validate our method numerically against existing 3D reconstruction and texture mapping methods.
Abstract:Monocular depth estimation in the wild inherently predicts depth up to an unknown scale. To resolve scale ambiguity issue, we present a learning algorithm that leverages monocular simultaneous localization and mapping (SLAM) with proprioceptive sensors. Such monocular SLAM systems can provide metrically scaled camera poses. Given these metric poses and monocular sequences, we propose a self-supervised learning method for the pre-trained supervised monocular depth networks to enable metrically scaled depth estimation. Our approach is based on a teacher-student formulation which guides our network to predict high-quality depths. We demonstrate that our approach is useful for various applications such as mobile robot navigation and is applicable to diverse environments. Our full system shows improvements over recent self-supervised depth estimation and completion methods on EuRoC, OpenLORIS, and ScanNet datasets.
Abstract:We present a novel approach for estimating depth from a monocular camera as it moves through complex and crowded indoor environments, e.g., a department store or a metro station. Our approach predicts absolute scale depth maps over the entire scene consisting of a static background and multiple moving people, by training on dynamic scenes. Since it is difficult to collect dense depth maps from crowded indoor environments, we design our training framework without requiring depths produced from depth sensing devices. Our network leverages RGB images and sparse depth maps generated from traditional 3D reconstruction methods to estimate dense depth maps. We use two constraints to handle depth for non-rigidly moving people without tracking their motion explicitly. We demonstrate that our approach offers consistent improvements over recent depth estimation methods on the NAVERLABS dataset, which includes complex and crowded scenes.
Abstract:We present a novel algorithm for self-supervised monocular depth completion. Our approach is based on training a neural network that requires only sparse depth measurements and corresponding monocular video sequences without dense depth labels. Our self-supervised algorithm is designed for challenging indoor environments with textureless regions, glossy and transparent surface, non-Lambertian surfaces, moving people, longer and diverse depth ranges and scenes captured by complex ego-motions. Our novel architecture leverages both deep stacks of sparse convolution blocks to extract sparse depth features and pixel-adaptive convolutions to fuse image and depth features. We compare with existing approaches in NYUv2, KITTI and NAVERLABS indoor datasets, and observe 5\:-\:34 \% improvements in root-means-square error (RMSE) reduction.
Abstract:Self-supervised monocular depth estimation has emerged as a promising method because it does not require groundtruth depth maps during training. As an alternative for the groundtruth depth map, the photometric loss enables to provide self-supervision on depth prediction by matching the input image frames. However, the photometric loss causes various problems, resulting in less accurate depth values compared with supervised approaches. In this paper, we propose SAFENet that is designed to leverage semantic information to overcome the limitations of the photometric loss. Our key idea is to exploit semantic-aware depth features that integrate the semantic and geometric knowledge. Therefore, we introduce multi-task learning schemes to incorporate semantic-awareness into the representation of depth features. Experiments on KITTI dataset demonstrate that our methods compete or even outperform the state-of-the-art methods. Furthermore, extensive experiments on different datasets show its better generalization ability and robustness to various conditions, such as low-light or adverse weather.
Abstract:Style transfer is the image synthesis task, which applies a style of one image to another while preserving the content. In statistical methods, the adaptive instance normalization (AdaIN) whitens the source images and applies the style of target images through normalizing the mean and variance of features. However, computing feature statistics for each instance would neglect the inherent relationship between features, so it is hard to learn global styles while fitting to the individual training dataset. In this paper, we present a novel learnable normalization technique for style transfer using graph convolutional networks, termed Graph Instance Normalization (GrIN). This algorithm makes the style transfer approach more robust by taking into account similar information shared between instances. Besides, this simple module is also applicable to other tasks like image-to-image translation or domain adaptation.
Abstract:Partial domain adaptation (PDA), in which we assume the target label space is included in the source label space, is a general version of standard domain adaptation. Since the target label space is unknown, the main challenge of PDA is to reduce the learning impact of irrelevant source samples, named outliers, which do not belong to the target label space. Although existing partial domain adaptation methods effectively down-weigh outliers' importance, they do not consider data structure of each domain and do not directly align the feature distributions of the same class in the source and target domains, which may lead to misalignment of category-level distributions. To overcome these problems, we propose a graph partial domain adaptation (GPDA) network, which exploits Graph Convolutional Networks for jointly considering data structure and the feature distribution of each class. Specifically, we propose a label relational graph to align the distributions of the same category in two domains and introduce moving average centroid separation for learning networks from the label relational graph. We demonstrate that considering data structure and the distribution of each category is effective for PDA and our GPDA network achieves state-of-the-art performance on the Digit and Office-31 datasets.