Alert button
Picture for Ivana Išgum

Ivana Išgum

Alert button

Deep Learning for Automatic Strain Quantification in Arrhythmogenic Right Ventricular Cardiomyopathy

Add code
Bookmark button
Alert button
Nov 24, 2023
Laura Alvarez-Florez, Jörg Sander, Mimount Bourfiss, Fleur V. Y. Tjong, Birgitta K. Velthuis, Ivana Išgum

Viaarxiv icon

Predicting Age from White Matter Diffusivity with Residual Learning

Add code
Bookmark button
Alert button
Nov 06, 2023
Chenyu Gao, Michael E. Kim, Ho Hin Lee, Qi Yang, Nazirah Mohd Khairi, Praitayini Kanakaraj, Nancy R. Newlin, Derek B. Archer, Angela L. Jefferson, Warren D. Taylor, Brian D. Boyd, Lori L. Beason-Held, Susan M. Resnick, The BIOCARD Study Team, Yuankai Huo, Katherine D. Van Schaik, Kurt G. Schilling, Daniel Moyer, Ivana Išgum, Bennett A. Landman

Figure 1 for Predicting Age from White Matter Diffusivity with Residual Learning
Figure 2 for Predicting Age from White Matter Diffusivity with Residual Learning
Figure 3 for Predicting Age from White Matter Diffusivity with Residual Learning
Figure 4 for Predicting Age from White Matter Diffusivity with Residual Learning
Viaarxiv icon

Automatic Coronary Artery Plaque Quantification and CAD-RADS Prediction using Mesh Priors

Add code
Bookmark button
Alert button
Oct 17, 2023
Rudolf L. M. van Herten, Nils Hampe, Richard A. P. Takx, Klaas Jan Franssen, Yining Wang, Dominika Suchá, José P. Henriques, Tim Leiner, R. Nils Planken, Ivana Išgum

Viaarxiv icon

Robust deformable image registration using cycle-consistent implicit representations

Add code
Bookmark button
Alert button
Oct 03, 2023
Louis D. van Harten, Jaap Stoker, Ivana Išgum

Viaarxiv icon

Deep Learning-Based Prediction of Fractional Flow Reserve along the Coronary Artery

Add code
Bookmark button
Alert button
Aug 09, 2023
Nils Hampe, Sanne G. M. van Velzen, Jean-Paul Aben, Carlos Collet, Ivana Išgum

Figure 1 for Deep Learning-Based Prediction of Fractional Flow Reserve along the Coronary Artery
Figure 2 for Deep Learning-Based Prediction of Fractional Flow Reserve along the Coronary Artery
Figure 3 for Deep Learning-Based Prediction of Fractional Flow Reserve along the Coronary Artery
Figure 4 for Deep Learning-Based Prediction of Fractional Flow Reserve along the Coronary Artery
Viaarxiv icon

Generative Models for Reproducible Coronary Calcium Scoring

Add code
Bookmark button
Alert button
May 24, 2022
Sanne G. M. van Velzen, Bob D. de Vos, Julia M. H. Noothout, Helena M. Verkooijen, Max A. Viergever, Ivana Išgum

Figure 1 for Generative Models for Reproducible Coronary Calcium Scoring
Figure 2 for Generative Models for Reproducible Coronary Calcium Scoring
Figure 3 for Generative Models for Reproducible Coronary Calcium Scoring
Figure 4 for Generative Models for Reproducible Coronary Calcium Scoring
Viaarxiv icon

Autoencoding Low-Resolution MRI for Semantically Smooth Interpolation of Anisotropic MRI

Add code
Bookmark button
Alert button
Feb 18, 2022
Jörg Sander, Bob D. de Vos, Ivana Išgum

Figure 1 for Autoencoding Low-Resolution MRI for Semantically Smooth Interpolation of Anisotropic MRI
Figure 2 for Autoencoding Low-Resolution MRI for Semantically Smooth Interpolation of Anisotropic MRI
Figure 3 for Autoencoding Low-Resolution MRI for Semantically Smooth Interpolation of Anisotropic MRI
Figure 4 for Autoencoding Low-Resolution MRI for Semantically Smooth Interpolation of Anisotropic MRI
Viaarxiv icon

AI for Calcium Scoring

Add code
Bookmark button
Alert button
May 24, 2021
Sanne G. M. van Velzen, Nils Hampe, Bob D. de Vos, Ivana Išgum

Figure 1 for AI for Calcium Scoring
Figure 2 for AI for Calcium Scoring
Figure 3 for AI for Calcium Scoring
Figure 4 for AI for Calcium Scoring
Viaarxiv icon

Automatic segmentation with detection of local segmentation failures in cardiac MRI

Add code
Bookmark button
Alert button
Nov 13, 2020
Jörg Sander, Bob D. de Vos, Ivana Išgum

Figure 1 for Automatic segmentation with detection of local segmentation failures in cardiac MRI
Figure 2 for Automatic segmentation with detection of local segmentation failures in cardiac MRI
Figure 3 for Automatic segmentation with detection of local segmentation failures in cardiac MRI
Figure 4 for Automatic segmentation with detection of local segmentation failures in cardiac MRI
Viaarxiv icon

Unsupervised Super-Resolution: Creating High-Resolution Medical Images from Low-Resolution Anisotropic Examples

Add code
Bookmark button
Alert button
Oct 25, 2020
Jörg Sander, Bob D. de Vos, Ivana Išgum

Figure 1 for Unsupervised Super-Resolution: Creating High-Resolution Medical Images from Low-Resolution Anisotropic Examples
Figure 2 for Unsupervised Super-Resolution: Creating High-Resolution Medical Images from Low-Resolution Anisotropic Examples
Figure 3 for Unsupervised Super-Resolution: Creating High-Resolution Medical Images from Low-Resolution Anisotropic Examples
Figure 4 for Unsupervised Super-Resolution: Creating High-Resolution Medical Images from Low-Resolution Anisotropic Examples
Viaarxiv icon