Modern video codecs and learning-based approaches struggle for semantic reconstruction at extremely low bit-rates due to reliance on low-level spatiotemporal redundancies. Generative models, especially diffusion models, offer a new paradigm for video compression by leveraging high-level semantic understanding and powerful visual synthesis. This paper propose a video compression framework that integrates generative priors to drastically reduce bit-rate while maintaining reconstruction fidelity. Specifically, our method compresses high-level semantic representations of the video, then uses a conditional diffusion model to reconstruct frames from these semantics. To further improve compression, we characterize motion information with global camera trajectories and foreground segmentation: background motion is compactly represented by camera pose parameters while foreground dynamics by sparse segmentation masks. This allows for significantly boosts compression efficiency, enabling descent video reconstruction at extremely low bit-rates.
We propose PoseGaussian, a pose-guided Gaussian Splatting framework for high-fidelity human novel view synthesis. Human body pose serves a dual purpose in our design: as a structural prior, it is fused with a color encoder to refine depth estimation; as a temporal cue, it is processed by a dedicated pose encoder to enhance temporal consistency across frames. These components are integrated into a fully differentiable, end-to-end trainable pipeline. Unlike prior works that use pose only as a condition or for warping, PoseGaussian embeds pose signals into both geometric and temporal stages to improve robustness and generalization. It is specifically designed to address challenges inherent in dynamic human scenes, such as articulated motion and severe self-occlusion. Notably, our framework achieves real-time rendering at 100 FPS, maintaining the efficiency of standard Gaussian Splatting pipelines. We validate our approach on ZJU-MoCap, THuman2.0, and in-house datasets, demonstrating state-of-the-art performance in perceptual quality and structural accuracy (PSNR 30.86, SSIM 0.979, LPIPS 0.028).
Imitation learning (IL) enables robots to acquire human-like motion skills from demonstrations, but it still requires extensive high-quality data and retraining to handle complex or long-horizon tasks. To improve data efficiency and adaptability, this study proposes a hierarchical IL framework that integrates motion primitives with proportion-based motion synthesis. The proposed method employs a two-layer architecture, where the upper layer performs long-term planning, while a set of lower-layer models learn individual motion primitives, which are combined according to specific proportions. Three model variants are introduced to explore different trade-offs between learning flexibility, computational cost, and adaptability: a learning-based proportion model, a sampling-based proportion model, and a playback-based proportion model, which differ in how the proportions are determined and whether the upper layer is trainable. Through real-robot pick-and-place experiments, the proposed models successfully generated complex motions not included in the primitive set. The sampling-based and playback-based proportion models achieved more stable and adaptable motion generation than the standard hierarchical model, demonstrating the effectiveness of proportion-based motion integration for practical robot learning.
Autonomous field robots operating in unstructured environments require robust perception to ensure safe and reliable operations. Recent advances in monocular depth estimation have demonstrated the potential of low-cost cameras as depth sensors; however, their adoption in field robotics remains limited due to the absence of reliable scale cues, ambiguous or low-texture conditions, and the scarcity of large-scale datasets. To address these challenges, we propose a depth completion model that trains on synthetic data and uses extremely sparse measurements from depth sensors to predict dense metric depth in unseen field robotics environments. A synthetic dataset generation pipeline tailored to field robotics enables the creation of multiple realistic datasets for training purposes. This dataset generation approach utilizes textured 3D meshes from Structure from Motion and photorealistic rendering with novel viewpoint synthesis to simulate diverse field robotics scenarios. Our approach achieves an end-to-end latency of 53 ms per frame on a Nvidia Jetson AGX Orin, enabling real-time deployment on embedded platforms. Extensive evaluation demonstrates competitive performance across diverse real-world field robotics scenarios.
Existing methods for human motion control in video generation typically rely on either 2D poses or explicit 3D parametric models (e.g., SMPL) as control signals. However, 2D poses rigidly bind motion to the driving viewpoint, precluding novel-view synthesis. Explicit 3D models, though structurally informative, suffer from inherent inaccuracies (e.g., depth ambiguity and inaccurate dynamics) which, when used as a strong constraint, override the powerful intrinsic 3D awareness of large-scale video generators. In this work, we revisit motion control from a 3D-aware perspective, advocating for an implicit, view-agnostic motion representation that naturally aligns with the generator's spatial priors rather than depending on externally reconstructed constraints. We introduce 3DiMo, which jointly trains a motion encoder with a pretrained video generator to distill driving frames into compact, view-agnostic motion tokens, injected semantically via cross-attention. To foster 3D awareness, we train with view-rich supervision (i.e., single-view, multi-view, and moving-camera videos), forcing motion consistency across diverse viewpoints. Additionally, we use auxiliary geometric supervision that leverages SMPL only for early initialization and is annealed to zero, enabling the model to transition from external 3D guidance to learning genuine 3D spatial motion understanding from the data and the generator's priors. Experiments confirm that 3DiMo faithfully reproduces driving motions with flexible, text-driven camera control, significantly surpassing existing methods in both motion fidelity and visual quality.
Novel view synthesis has evolved rapidly, advancing from Neural Radiance Fields to 3D Gaussian Splatting (3DGS), which offers real-time rendering and rapid training without compromising visual fidelity. However, 3DGS relies heavily on accurate camera poses and high-quality point cloud initialization, which are difficult to obtain in sparse-view scenarios. While traditional Structure from Motion (SfM) pipelines often fail in these settings, existing learning-based point estimation alternatives typically require reliable reference views and remain sensitive to pose or depth errors. In this work, we propose a robust method utilizing π^3, a reference-free point cloud estimation network. We integrate dense initialization from π^3 with a regularization scheme designed to mitigate geometric inaccuracies. Specifically, we employ uncertainty-guided depth supervision, normal consistency loss, and depth warping. Experimental results demonstrate that our approach achieves state-of-the-art performance on the Tanks and Temples, LLFF, DTU, and MipNeRF360 datasets.
Novel view synthesis of dynamic scenes is fundamental to achieving photorealistic 4D reconstruction and immersive visual experiences. Recent progress in Gaussian-based representations has significantly improved real-time rendering quality, yet existing methods still struggle to maintain a balance between long-term static and short-term dynamic regions in both representation and optimization. To address this, we present SharpTimeGS, a lifespan-aware 4D Gaussian framework that achieves temporally adaptive modeling of both static and dynamic regions under a unified representation. Specifically, we introduce a learnable lifespan parameter that reformulates temporal visibility from a Gaussian-shaped decay into a flat-top profile, allowing primitives to remain consistently active over their intended duration and avoiding redundant densification. In addition, the learned lifespan modulates each primitives' motion, reducing drift in long-lived static points while retaining unrestricted motion for short-lived dynamic ones. This effectively decouples motion magnitude from temporal duration, improving long-term stability without compromising dynamic fidelity. Moreover, we design a lifespan-velocity-aware densification strategy that mitigates optimization imbalance between static and dynamic regions by allocating more capacity to regions with pronounced motion while keeping static areas compact and stable. Extensive experiments on multiple benchmarks demonstrate that our method achieves state-of-the-art performance while supporting real-time rendering up to 4K resolution at 100 FPS on one RTX 4090.
Generating talking avatars is a fundamental task in video generation. Although existing methods can generate full-body talking avatars with simple human motion, extending this task to grounded human-object interaction (GHOI) remains an open challenge, requiring the avatar to perform text-aligned interactions with surrounding objects. This challenge stems from the need for environmental perception and the control-quality dilemma in GHOI generation. To address this, we propose a novel dual-stream framework, InteractAvatar, which decouples perception and planning from video synthesis for grounded human-object interaction. Leveraging detection to enhance environmental perception, we introduce a Perception and Interaction Module (PIM) to generate text-aligned interaction motions. Additionally, an Audio-Interaction Aware Generation Module (AIM) is proposed to synthesize vivid talking avatars performing object interactions. With a specially designed motion-to-video aligner, PIM and AIM share a similar network structure and enable parallel co-generation of motions and plausible videos, effectively mitigating the control-quality dilemma. Finally, we establish a benchmark, GroundedInter, for evaluating GHOI video generation. Extensive experiments and comparisons demonstrate the effectiveness of our method in generating grounded human-object interactions for talking avatars. Project page: https://interactavatar.github.io
Touch data from mobile devices are collected at scale but reveal little about the interactions that produce them. While biomechanical simulations can illuminate motor control processes, they have not yet been developed for touch interactions. To close this gap, we propose a novel computational problem: synthesizing plausible motion directly from logs. Our key insight is a reinforcement learning-driven musculoskeletal forward simulation that generates biomechanically plausible motion sequences consistent with events recorded in touch logs. We achieve this by integrating a software emulator into a physics simulator, allowing biomechanical models to manipulate real applications in real-time. Log2Motion produces rich syntheses of user movements from touch logs, including estimates of motion, speed, accuracy, and effort. We assess the plausibility of generated movements by comparing against human data from a motion capture study and prior findings, and demonstrate Log2Motion in a large-scale dataset. Biomechanical motion synthesis provides a new way to understand log data, illuminating the ergonomics and motor control underlying touch interactions.
Current generative video models excel at producing novel content from text and image prompts, but leave a critical gap in editing existing pre-recorded videos, where minor alterations to the spoken script require preserving motion, temporal coherence, speaker identity, and accurate lip synchronization. We introduce EditYourself, a DiT-based framework for audio-driven video-to-video (V2V) editing that enables transcript-based modification of talking head videos, including the seamless addition, removal, and retiming of visually spoken content. Building on a general-purpose video diffusion model, EditYourself augments its V2V capabilities with audio conditioning and region-aware, edit-focused training extensions. This enables precise lip synchronization and temporally coherent restructuring of existing performances via spatiotemporal inpainting, including the synthesis of realistic human motion in newly added segments, while maintaining visual fidelity and identity consistency over long durations. This work represents a foundational step toward generative video models as practical tools for professional video post-production.