Abstract:Novel view synthesis of dynamic scenes is fundamental to achieving photorealistic 4D reconstruction and immersive visual experiences. Recent progress in Gaussian-based representations has significantly improved real-time rendering quality, yet existing methods still struggle to maintain a balance between long-term static and short-term dynamic regions in both representation and optimization. To address this, we present SharpTimeGS, a lifespan-aware 4D Gaussian framework that achieves temporally adaptive modeling of both static and dynamic regions under a unified representation. Specifically, we introduce a learnable lifespan parameter that reformulates temporal visibility from a Gaussian-shaped decay into a flat-top profile, allowing primitives to remain consistently active over their intended duration and avoiding redundant densification. In addition, the learned lifespan modulates each primitives' motion, reducing drift in long-lived static points while retaining unrestricted motion for short-lived dynamic ones. This effectively decouples motion magnitude from temporal duration, improving long-term stability without compromising dynamic fidelity. Moreover, we design a lifespan-velocity-aware densification strategy that mitigates optimization imbalance between static and dynamic regions by allocating more capacity to regions with pronounced motion while keeping static areas compact and stable. Extensive experiments on multiple benchmarks demonstrate that our method achieves state-of-the-art performance while supporting real-time rendering up to 4K resolution at 100 FPS on one RTX 4090.
Abstract:With 3D data rapidly emerging as an important form of multimedia information, 3D human mesh recovery technology has also advanced accordingly. However, current methods mainly focus on handling humans wearing tight clothing and perform poorly when estimating body shapes and poses under diverse clothing, especially loose garments. To this end, we make two key insights: (1) tailoring clothing to fit the human body can mitigate the adverse impact of clothing on 3D human mesh recovery, and (2) utilizing human visual information from large foundational models can enhance the generalization ability of the estimation. Based on these insights, we propose ClothHMR, to accurately recover 3D meshes of humans in diverse clothing. ClothHMR primarily consists of two modules: clothing tailoring (CT) and FHVM-based mesh recovering (MR). The CT module employs body semantic estimation and body edge prediction to tailor the clothing, ensuring it fits the body silhouette. The MR module optimizes the initial parameters of the 3D human mesh by continuously aligning the intermediate representations of the 3D mesh with those inferred from the foundational human visual model (FHVM). ClothHMR can accurately recover 3D meshes of humans wearing diverse clothing, precisely estimating their body shapes and poses. Experimental results demonstrate that ClothHMR significantly outperforms existing state-of-the-art methods across benchmark datasets and in-the-wild images. Additionally, a web application for online fashion and shopping powered by ClothHMR is developed, illustrating that ClothHMR can effectively serve real-world usage scenarios. The code and model for ClothHMR are available at: \url{https://github.com/starVisionTeam/ClothHMR}.