Decentralized training is often regarded as inferior to centralized training because the consensus errors between workers are thought to undermine convergence and generalization, even with homogeneous data distributions. This work challenges this view by introducing decentralized SGD with Adaptive Consensus (DSGD-AC), which intentionally preserves non-vanishing consensus errors through a time-dependent scaling mechanism. We prove that these errors are not random noise but systematically align with the dominant Hessian subspace, acting as structured perturbations that guide optimization toward flatter minima. Across image classification and machine translation benchmarks, DSGD-AC consistently surpasses both standard DSGD and centralized SGD in test accuracy and solution flatness. Together, these results establish consensus errors as a useful implicit regularizer and open a new perspective on the design of decentralized learning algorithms.
Large language models (LLMs) are increasingly applied in mental health support systems, where reliable recognition of high-risk states such as suicidal ideation and self-harm is safety-critical. However, existing evaluations primarily rely on aggregate performance metrics, which often obscure risk-specific failure modes and provide limited insight into model behavior in realistic, multi-turn interactions. We present MHDash, an open-source platform designed to support the development, evaluation, and auditing of AI systems for mental health applications. MHDash integrates data collection, structured annotation, multi-turn dialogue generation, and baseline evaluation into a unified pipeline. The platform supports annotations across multiple dimensions, including Concern Type, Risk Level, and Dialogue Intent, enabling fine-grained and risk-aware analysis. Our results reveal several key findings: (i) simple baselines and advanced LLM APIs exhibit comparable overall accuracy yet diverge significantly on high-risk cases; (ii) some LLMs maintain consistent ordinal severity ranking while failing absolute risk classification, whereas others achieve reasonable aggregate scores but suffer from high false negative rates on severe categories; and (iii) performance gaps are amplified in multi-turn dialogues, where risk signals emerge gradually. These observations demonstrate that conventional benchmarks are insufficient for safety-critical mental health settings. By releasing MHDash as an open platform, we aim to promote reproducible research, transparent evaluation, and safety-aligned development of AI systems for mental health support.
Steady-state visually evoked potentials (SSVEP)-based brain-computer interfaces (BCIs) are widely used due to their high signal-to-noise ratio and user-friendliness. Accurate decoding of SSVEP signals is crucial for interpreting user intentions in BCI applications. However, signal variability across subjects and the costly user-specific annotation limit recognition performance. Therefore, we propose a novel cross-subject domain adaptation method built upon the self-training paradigm. Specifically, a Filter-Bank Euclidean Alignment (FBEA) strategy is designed to exploit frequency information from SSVEP filter banks. Then, we propose a Cross-Subject Self-Training (CSST) framework consisting of two stages: Pre-Training with Adversarial Learning (PTAL), which aligns the source and target distributions, and Dual-Ensemble Self-Training (DEST), which refines pseudo-label quality. Moreover, we introduce a Time-Frequency Augmented Contrastive Learning (TFA-CL) module to enhance feature discriminability across multiple augmented views. Extensive experiments on the Benchmark and BETA datasets demonstrate that our approach achieves state-of-the-art performance across varying signal lengths, highlighting its superiority.
The scaling law, which indicates that model performance improves with increasing dataset and model capacity, has fueled a growing trend in expanding recommendation models in both industry and academia. However, the advent of large-scale recommenders also brings significantly higher computational costs, particularly under the long-sequence dependencies inherent in the user intent of recommendation systems. Current approaches often rely on pre-storing the intermediate states of the past behavior for each user, thereby reducing the quadratic re-computation cost for the following requests. Despite their effectiveness, these methods often treat memory merely as a medium for acceleration, without adequately considering the space overhead it introduces. This presents a critical challenge in real-world recommendation systems with billions of users, each of whom might initiate thousands of interactions and require massive memory for state storage. Fortunately, there have been several memory management strategies examined for compression in LLM, while most have not been evaluated on the recommendation task. To mitigate this gap, we introduce MALLOC, a comprehensive benchmark for memory-aware long sequence compression. MALLOC presents a comprehensive investigation and systematic classification of memory management techniques applicable to large sequential recommendations. These techniques are integrated into state-of-the-art recommenders, enabling a reproducible and accessible evaluation platform. Through extensive experiments across accuracy, efficiency, and complexity, we demonstrate the holistic reliability of MALLOC in advancing large-scale recommendation. Code is available at https://anonymous.4open.science/r/MALLOC.
Enabling natural communication through brain-computer interfaces (BCIs) remains one of the most profound challenges in neuroscience and neurotechnology. While existing frameworks offer partial solutions, they are constrained by oversimplified semantic representations and a lack of interpretability. To overcome these limitations, we introduce Semantic Intent Decoding (SID), a novel framework that translates neural activity into natural language by modeling meaning as a flexible set of compositional semantic units. SID is built on three core principles: semantic compositionality, continuity and expandability of semantic space, and fidelity in reconstruction. We present BrainMosaic, a deep learning architecture implementing SID. BrainMosaic decodes multiple semantic units from EEG/SEEG signals using set matching and then reconstructs coherent sentences through semantic-guided reconstruction. This approach moves beyond traditional pipelines that rely on fixed-class classification or unconstrained generation, enabling a more interpretable and expressive communication paradigm. Extensive experiments on multilingual EEG and clinical SEEG datasets demonstrate that SID and BrainMosaic offer substantial advantages over existing frameworks, paving the way for natural and effective BCI-mediated communication.
Code comments serve a crucial role in software development for documenting functionality, clarifying design choices, and assisting with issue tracking. They capture developers' insights about the surrounding source code, serving as an essential resource for both human comprehension and automated analysis. Nevertheless, since comments are in natural language, they present challenges for machine-based code understanding. To address this, recent studies have applied natural language processing (NLP) and deep learning techniques to classify comments according to developers' intentions. However, existing datasets for this task suffer from size limitations and class imbalance, as they rely on manual annotations and may not accurately represent the distribution of comments in real-world codebases. To overcome this issue, we introduce new synthetic oversampling and augmentation techniques based on high-quality data generation to enhance the NLBSE'26 challenge datasets. Our Synthetic Quality Oversampling Technique and Augmentation Technique (Q-SYNTH) yield promising results, improving the base classifier by $2.56\%$.
Intent detection, a fundamental text classification task, aims to identify and label the semantics of user queries, playing a vital role in numerous business applications. Despite the dominance of deep learning techniques in this field, the internal mechanisms enabling Recurrent Neural Networks (RNNs) to solve intent detection tasks are poorly understood. In this work, we apply dynamical systems theory to analyze how RNN architectures address this problem, using both the balanced SNIPS and the imbalanced ATIS datasets. By interpreting sentences as trajectories in the hidden state space, we first show that on the balanced SNIPS dataset, the network learns an ideal solution: the state space, constrained to a low-dimensional manifold, is partitioned into distinct clusters corresponding to each intent. The application of this framework to the imbalanced ATIS dataset then reveals how this ideal geometric solution is distorted by class imbalance, causing the clusters for low-frequency intents to degrade. Our framework decouples geometric separation from readout alignment, providing a novel, mechanistic explanation for real world performance disparities. These findings provide new insights into RNN dynamics, offering a geometric interpretation of how dataset properties directly shape a network's computational solution.
Drones operating in human-occupied spaces suffer from insufficient communication mechanisms that create uncertainty about their intentions. We present HoverAI, an embodied aerial agent that integrates drone mobility, infrastructure-independent visual projection, and real-time conversational AI into a unified platform. Equipped with a MEMS laser projector, onboard semi-rigid screen, and RGB camera, HoverAI perceives users through vision and voice, responding via lip-synced avatars that adapt appearance to user demographics. The system employs a multimodal pipeline combining VAD, ASR (Whisper), LLM-based intent classification, RAG for dialogue, face analysis for personalization, and voice synthesis (XTTS v2). Evaluation demonstrates high accuracy in command recognition (F1: 0.90), demographic estimation (gender F1: 0.89, age MAE: 5.14 years), and speech transcription (WER: 0.181). By uniting aerial robotics with adaptive conversational AI and self-contained visual output, HoverAI introduces a new class of spatially-aware, socially responsive embodied agents for applications in guidance, assistance, and human-centered interaction.
Social infrastructure and other built environments are increasingly expected to support well-being and community resilience by enabling social interaction. Yet in civil and built-environment research, there is no consistent and privacy-preserving way to represent and measure socially meaningful interaction in these spaces, leaving studies to operationalize "interaction" differently across contexts and limiting practitioners' ability to evaluate whether design interventions are changing the forms of interaction that social capital theory predicts should matter. To address this field-level and methodological gap, we introduce the Dyadic User Engagement DataseT (DUET) dataset and an embedded kinesics recognition framework that operationalize Ekman and Friesen's kinesics taxonomy as a function-level interaction vocabulary aligned with social capital-relevant behaviors (e.g., reciprocity and attention coordination). DUET captures 12 dyadic interactions spanning all five kinesic functions-emblems, illustrators, affect displays, adaptors, and regulators-across four sensing modalities and three built-environment contexts, enabling privacy-preserving analysis of communicative intent through movement. Benchmarking six open-source, state-of-the-art human activity recognition models quantifies the difficulty of communicative-function recognition on DUET and highlights the limitations of ubiquitous monadic, action-level recognition when extended to dyadic, socially grounded interaction measurement. Building on DUET, our recognition framework infers communicative function directly from privacy-preserving skeletal motion without handcrafted action-to-function dictionaries; using a transfer-learning architecture, it reveals structured clustering of kinesic functions and a strong association between representation quality and classification performance while generalizing across subjects and contexts.
Contemporary sequential recommendation methods are becoming more complex, shifting from classification to a diffusion-guided generative paradigm. However, the quality of guidance in the form of user information is often compromised by missing data in the observed sequences, leading to suboptimal generation quality. Existing methods address this by removing locally similar items, but overlook ``critical turning points'' in user interest, which are crucial for accurately predicting subsequent user intent. To address this, we propose a novel Counterfactual Attention Regulation Diffusion model (CARD), which focuses on amplifying the signal from key interest-turning-point items while concurrently identifying and suppressing noise within the user sequence. CARD consists of (1) a Dual-side Thompson Sampling method to identify sequences undergoing significant interest shift, and (2) a counterfactual attention mechanism for these sequences to quantify the importance of each item. In this manner, CARD provides the diffusion model with a high-quality guidance signal composed of dynamically re-weighted interaction vectors to enable effective generation. Experiments show our method works well on real-world data without being computationally expensive. Our code is available at https://github.com/yanqilong3321/CARD.