Dehazing is the process of removing haze or fog from images to improve their visibility.
Image dehazing is a critical challenge in computer vision, essential for enhancing image clarity in hazy conditions. Traditional methods often rely on atmospheric scattering models, while recent deep learning techniques, specifically Convolutional Neural Networks (CNNs) and Transformers, have improved performance by effectively analyzing image features. However, CNNs struggle with long-range dependencies, and Transformers demand significant computational resources. To address these limitations, we propose DehazeSNN, an innovative architecture that integrates a U-Net-like design with Spiking Neural Networks (SNNs). DehazeSNN captures multi-scale image features while efficiently managing local and long-range dependencies. The introduction of the Orthogonal Leaky-Integrate-and-Fire Block (OLIFBlock) enhances cross-channel communication, resulting in superior dehazing performance with reduced computational burden. Our extensive experiments show that DehazeSNN is highly competitive to state-of-the-art methods on benchmark datasets, delivering high-quality haze-free images with a smaller model size and less multiply-accumulate operations. The proposed dehazing method is publicly available at https://github.com/HaoranLiu507/DehazeSNN.
This paper introduces Hazedefy, a lightweight and application-focused dehazing pipeline intended for real-time video and live camera feed enhancement. Hazedefy prioritizes computational simplicity and practical deployability on consumer-grade hardware, building upon the Dark Channel Prior (DCP) concept and the atmospheric scattering model. Key elements include gamma-adaptive reconstruction, a fast transmission approximation with lower bounds for numerical stability, a stabilized atmospheric light estimator based on fractional top-pixel averaging, and an optional color balance stage. The pipeline is suitable for mobile and embedded applications, as experimental demonstrations on real-world images and videos show improved visibility and contrast without requiring GPU acceleration.
Image dehazing is crucial for reliable visual perception, yet it remains highly challenging under real-world non-uniform haze conditions. Although Transformer-based methods excel at capturing global context, their quadratic computational complexity hinders real-time deployment. To address this, we propose Fourier Receptance Weighted Key Value (Fourier-RWKV), a novel dehazing framework based on a Multi-State Perception paradigm. The model achieves comprehensive haze degradation modeling with linear complexity by synergistically integrating three distinct perceptual states: (1) Spatial-form Perception, realized through the Deformable Quad-directional Token Shift (DQ-Shift) operation, which dynamically adjusts receptive fields to accommodate local haze variations; (2) Frequency-domain Perception, implemented within the Fourier Mix block, which extends the core WKV attention mechanism of RWKV from the spatial domain to the Fourier domain, preserving the long-range dependencies essential for global haze estimation while mitigating spatial attenuation; (3) Semantic-relation Perception, facilitated by the Semantic Bridge Module (SBM), which utilizes Dynamic Semantic Kernel Fusion (DSK-Fusion) to precisely align encoder-decoder features and suppress artifacts. Extensive experiments on multiple benchmarks demonstrate that Fourier-RWKV delivers state-of-the-art performance across diverse haze scenarios while significantly reducing computational overhead, establishing a favorable trade-off between restoration quality and practical efficiency. Code is available at: https://github.com/Dilizlr/Fourier-RWKV.
Image dehazing is an important task in the field of computer vision, aiming at restoring clear and detail-rich visual content from haze-affected images. However, when dealing with complex scenes, existing methods often struggle to strike a balance between fine-grained feature representation of inhomogeneous haze distribution and global consistency modeling. Furthermore, to better learn the common degenerate representation of haze in spatial variations, we propose an unsupervised dehaze method for implicit neural degradation representation. Firstly, inspired by the Kolmogorov-Arnold representation theorem, we propose a mechanism combining the channel-independent and channel-dependent mechanisms, which efficiently enhances the ability to learn from nonlinear dependencies. which in turn achieves good visual perception in complex scenes. Moreover, we design an implicit neural representation to model haze degradation as a continuous function to eliminate redundant information and the dependence on explicit feature extraction and physical models. To further learn the implicit representation of the haze features, we also designed a dense residual enhancement module from it to eliminate redundant information. This achieves high-quality image restoration. Experimental results show that our method achieves competitive dehaze performance on various public and real-world datasets. This project code will be available at https://github.com/Fan-pixel/NeDR-Dehaze.
Clear imaging under hazy conditions is a critical task. Prior-based and neural methods have improved results. However, they operate on RGB frames, which suffer from limited dynamic range. Therefore, dehazing remains ill-posed and can erase structure and illumination details. To address this, we use event cameras for dehazing for the \textbf{first time}. Event cameras offer much higher HDR ($120 dBvs.60 dB$) and microsecond latency, therefore they suit hazy scenes. In practice, transferring HDR cues from events to frames is hard because real paired data are scarce. To tackle this, we propose an event-guided diffusion model that utilizes the strong generative priors of diffusion models to reconstruct clear images from hazy inputs by effectively transferring HDR information from events. Specifically, we design an event-guided module that maps sparse HDR event features, \textit{e.g.,} edges, corners, into the diffusion latent space. This clear conditioning provides precise structural guidance during generation, improves visual realism, and reduces semantic drift. For real-world evaluation, we collect a drone dataset in heavy haze (AQI = 341) with synchronized RGB and event sensors. Experiments on two benchmarks and our dataset achieve state-of-the-art results.
Ultra-High-Definition (UHD) image dehazing faces challenges such as limited scene adaptability in prior-based methods and high computational complexity with color distortion in deep learning approaches. To address these issues, we propose 4KDehazeFlow, a novel method based on Flow Matching and the Haze-Aware vector field. This method models the dehazing process as a progressive optimization of continuous vector field flow, providing efficient data-driven adaptive nonlinear color transformation for high-quality dehazing. Specifically, our method has the following advantages: 1) 4KDehazeFlow is a general method compatible with various deep learning networks, without relying on any specific network architecture. 2) We propose a learnable 3D lookup table (LUT) that encodes haze transformation parameters into a compact 3D mapping matrix, enabling efficient inference through precomputed mappings. 3) We utilize a fourth-order Runge-Kutta (RK4) ordinary differential equation (ODE) solver to stably solve the dehazing flow field through an accurate step-by-step iterative method, effectively suppressing artifacts. Extensive experiments show that 4KDehazeFlow exceeds seven state-of-the-art methods. It delivers a 2dB PSNR increase and better performance in dense haze and color fidelity.
Image quality is a critical factor in delivering visually appealing content on web platforms. However, images often suffer from degradation due to lossy operations applied by online social networks (OSNs), negatively affecting user experience. Image restoration is the process of recovering a clean high-quality image from a given degraded input. Recently, multi-task (all-in-one) image restoration models have gained significant attention, due to their ability to simultaneously handle different types of image degradations. However, these models often come with an excessively high number of trainable parameters, making them computationally inefficient. In this paper, we propose a strategy for compressing multi-task image restoration models. We aim to discover highly sparse subnetworks within overparameterized deep models that can match or even surpass the performance of their dense counterparts. The proposed model, namely MIR-L, utilizes an iterative pruning strategy that removes low-magnitude weights across multiple rounds, while resetting the remaining weights to their original initialization. This iterative process is important for the multi-task image restoration model's optimization, effectively uncovering "winning tickets" that maintain or exceed state-of-the-art performance at high sparsity levels. Experimental evaluation on benchmark datasets for the deraining, dehazing, and denoising tasks shows that MIR-L retains only 10% of the trainable parameters while maintaining high image restoration performance. Our code, datasets and pre-trained models are made publicly available at https://github.com/Thomkat/MIR-L.
Echocardiography plays a central role in cardiac imaging, offering dynamic views of the heart that are essential for diagnosis and monitoring. However, image quality can be significantly degraded by haze arising from multipath reverberations, particularly in difficult-to-image patients. In this work, we propose a semantic-guided, diffusion-based dehazing algorithm developed for the MICCAI Dehazing Echocardiography Challenge (DehazingEcho2025). Our method integrates a pixel-wise noise model, derived from semantic segmentation of hazy inputs into a diffusion posterior sampling framework guided by a generative prior trained on clean ultrasound data. Quantitative evaluation on the challenge dataset demonstrates strong performance across contrast and fidelity metrics. Code for the submitted algorithm is available at https://github.com/tristan-deep/semantic-diffusion-echo-dehazing.
Single-image dehazing under dense and non-uniform haze conditions remains challenging due to severe information degradation and spatial heterogeneity. Traditional diffusion-based dehazing methods struggle with insufficient generation conditioning and lack of adaptability to spatially varying haze distributions, which leads to suboptimal restoration. To address these limitations, we propose RPD-Diff, a Region-adaptive Physics-guided Dehazing Diffusion Model for robust visibility enhancement in complex haze scenarios. RPD-Diff introduces a Physics-guided Intermediate State Targeting (PIST) strategy, which leverages physical priors to reformulate the diffusion Markov chain by generation target transitions, mitigating the issue of insufficient conditioning in dense haze scenarios. Additionally, the Haze-Aware Denoising Timestep Predictor (HADTP) dynamically adjusts patch-specific denoising timesteps employing a transmission map cross-attention mechanism, adeptly managing non-uniform haze distributions. Extensive experiments across four real-world datasets demonstrate that RPD-Diff achieves state-of-the-art performance in challenging dense and non-uniform haze scenarios, delivering high-quality, haze-free images with superior detail clarity and color fidelity.
Advancements in image sensing have elevated the importance of Ultra-High-Definition Image Restoration (UHD IR). Traditional methods, such as extreme downsampling or transformation from the spatial to the frequency domain, encounter significant drawbacks: downsampling induces irreversible information loss in UHD images, while our frequency analysis reveals that pure frequency-domain approaches are ineffective for spatially confined image artifacts, primarily due to the loss of degradation locality. To overcome these limitations, we present RetinexDual, a novel Retinex theory-based framework designed for generalized UHD IR tasks. RetinexDual leverages two complementary sub-networks: the Scale-Attentive maMBA (SAMBA) and the Frequency Illumination Adaptor (FIA). SAMBA, responsible for correcting the reflectance component, utilizes a coarse-to-fine mechanism to overcome the causal modeling of mamba, which effectively reduces artifacts and restores intricate details. On the other hand, FIA ensures precise correction of color and illumination distortions by operating in the frequency domain and leveraging the global context provided by it. Evaluating RetinexDual on four UHD IR tasks, namely deraining, deblurring, dehazing, and Low-Light Image Enhancement (LLIE), shows that it outperforms recent methods qualitatively and quantitatively. Ablation studies demonstrate the importance of employing distinct designs for each branch in RetinexDual, as well as the effectiveness of its various components.