In pre-production, filmmakers and 3D animation experts must rapidly prototype ideas to explore a film's possibilities before fullscale production, yet conventional approaches involve trade-offs in efficiency and expressiveness. Hand-drawn storyboards often lack spatial precision needed for complex cinematography, while 3D previsualization demands expertise and high-quality rigged assets. To address this gap, we present PrevizWhiz, a system that leverages rough 3D scenes in combination with generative image and video models to create stylized video previews. The workflow integrates frame-level image restyling with adjustable resemblance, time-based editing through motion paths or external video inputs, and refinement into high-fidelity video clips. A study with filmmakers demonstrates that our system lowers technical barriers for film-makers, accelerates creative iteration, and effectively bridges the communication gap, while also surfacing challenges of continuity, authorship, and ethical consideration in AI-assisted filmmaking.
We introduce a framework that automates the transformation of static anime illustrations into manipulatable 2.5D models. Current professional workflows require tedious manual segmentation and the artistic ``hallucination'' of occluded regions to enable motion. Our approach overcomes this by decomposing a single image into fully inpainted, semantically distinct layers with inferred drawing orders. To address the scarcity of training data, we introduce a scalable engine that bootstraps high-quality supervision from commercial Live2D models, capturing pixel-perfect semantics and hidden geometry. Our methodology couples a diffusion-based Body Part Consistency Module, which enforces global geometric coherence, with a pixel-level pseudo-depth inference mechanism. This combination resolves the intricate stratification of anime characters, e.g., interleaving hair strands, allowing for dynamic layer reconstruction. We demonstrate that our approach yields high-fidelity, manipulatable models suitable for professional, real-time animation applications.
Text-to-image diffusion models have revolutionized generative AI, enabling high-quality and photorealistic image synthesis. However, their practical deployment remains hindered by several limitations: sensitivity to prompt phrasing, ambiguity in semantic interpretation (e.g., ``mouse" as animal vs. a computer peripheral), artifacts such as distorted anatomy, and the need for carefully engineered input prompts. Existing methods often require additional training and offer limited controllability, restricting their adaptability in real-world applications. We introduce Self-Improving Diffusion Agent (SIDiffAgent), a training-free agentic framework that leverages the Qwen family of models (Qwen-VL, Qwen-Image, Qwen-Edit, Qwen-Embedding) to address these challenges. SIDiffAgent autonomously manages prompt engineering, detects and corrects poor generations, and performs fine-grained artifact removal, yielding more reliable and consistent outputs. It further incorporates iterative self-improvement by storing a memory of previous experiences in a database. This database of past experiences is then used to inject prompt-based guidance at each stage of the agentic pipeline. \modelour achieved an average VQA score of 0.884 on GenAIBench, significantly outperforming open-source, proprietary models and agentic methods. We will publicly release our code upon acceptance.
Learning behavioral taxonomies from animal-borne sensors is challenging because labels are scarce, classes are highly imbalanced, and behaviors may be absent from the annotated set. We study generalized behavior discovery in short multivariate motion snippets from gulls, where each sample is a sequence with 3-axis IMU acceleration (20 Hz) and GPS speed, spanning nine expert-annotated behavior categories. We propose a semi-supervised discovery pipeline that (i) learns an embedding function from the labeled subset, (ii) performs label-guided clustering over embeddings of both labeled and unlabeled samples to form candidate behavior groups, and (iii) decides whether a discovered group is truly novel using a containment score. Our key contribution is a KDE + HDR (highest-density region) containment score that measures how much a discovered cluster distribution is contained within, or contains, each known-class distribution; the best-match containment score serves as an interpretable novelty statistic. In experiments where an entire behavior is withheld from supervision and appears only in the unlabeled pool, the method recovers a distinct cluster and the containment score flags novelty via low overlap, while a negative-control setting with no novel behavior yields consistently higher overlaps. These results suggest that HDR-based containment provides a practical, quantitative test for generalized class discovery in ecological motion time series under limited annotation and severe class imbalance.
Nowadays, neural networks act as a synonym for artificial intelligence. Present neural network models, although remarkably powerful, are inefficient both in terms of data and energy. Several alternative forms of neural networks have been proposed to address some of these problems. Specifically, spiking neural networks are suitable for efficient hardware implementations. However, effective learning algorithms for spiking networks remain elusive, although it is suspected that effective plasticity mechanisms could alleviate the problem of data efficiency. Here, we present a new framework for spiking neural networks - Spark - built upon the idea of modular design, from simple components to entire models. The aim of this framework is to provide an efficient and streamlined pipeline for spiking neural networks. We showcase this framework by solving the sparse-reward cartpole problem with simple plasticity mechanisms. We hope that a framework compatible with traditional ML pipelines may accelerate research in the area, specifically for continuous and unbatched learning, akin to the one animals exhibit.
Prevailing image representation methods, including explicit representations such as raster images and Gaussian primitives, as well as implicit representations such as latent images, either suffer from representation redundancy that leads to heavy manual editing effort, or lack a direct mapping from latent variables to semantic instances or parts, making fine-grained manipulation difficult. These limitations hinder efficient and controllable image and video editing. To address these issues, we propose a hierarchical proxy-based parametric image representation that disentangles semantic, geometric, and textural attributes into independent and manipulable parameter spaces. Based on a semantic-aware decomposition of the input image, our representation constructs hierarchical proxy geometries through adaptive Bezier fitting and iterative internal region subdivision and meshing. Multi-scale implicit texture parameters are embedded into the resulting geometry-aware distributed proxy nodes, enabling continuous high-fidelity reconstruction in the pixel domain and instance- or part-independent semantic editing. In addition, we introduce a locality-adaptive feature indexing mechanism to ensure spatial texture coherence, which further supports high-quality background completion without relying on generative models. Extensive experiments on image reconstruction and editing benchmarks, including ImageNet, OIR-Bench, and HumanEdit, demonstrate that our method achieves state-of-the-art rendering fidelity with significantly fewer parameters, while enabling intuitive, interactive, and physically plausible manipulation. Moreover, by integrating proxy nodes with Position-Based Dynamics, our framework supports real-time physics-driven animation using lightweight implicit rendering, achieving superior temporal consistency and visual realism compared with generative approaches.
Text-to-motion generation, which converts motion language descriptions into coherent 3D human motion sequences, has attracted increasing attention in fields, such as avatar animation and humanoid robotic interaction. Though existing models have achieved significant fidelity, they still suffer from two core limitations: (i) They treat motion periodicity and keyframe saliency as independent factors, overlooking their coupling and causing generation drift in long sequences. (ii) They are fragile to semantically equivalent paraphrases, where minor synonym substitutions distort textual embeddings, propagating through the decoder and producing unstable or erroneous motions. In this work, we propose T2M Mamba to address these limitations by (i) proposing Periodicity-Saliency Aware Mamba, which utilizes novel algorithms for keyframe weight estimation via enhanced Density Peaks Clustering and motion periodicity estimation via FFT-accelerated autocorrelation to capture coupled dynamics with minimal computational overhead, and (ii) constructing a Periodic Differential Cross-modal Alignment Module (PDCAM) to enhance robust alignment of textual and motion embeddings. Extensive experiments on HumanML3D and KIT-ML datasets have been conducted, confirming the effectiveness of our approach, achieving an FID of 0.068 and consistent gains on all other metrics.
Achieving robust, human-like whole-body control on humanoid robots for agile, contact-rich behaviors remains a central challenge, demanding heavy per-skill engineering and a brittle process of tuning controllers. We introduce ZEST (Zero-shot Embodied Skill Transfer), a streamlined motion-imitation framework that trains policies via reinforcement learning from diverse sources -- high-fidelity motion capture, noisy monocular video, and non-physics-constrained animation -- and deploys them to hardware zero-shot. ZEST generalizes across behaviors and platforms while avoiding contact labels, reference or observation windows, state estimators, and extensive reward shaping. Its training pipeline combines adaptive sampling, which focuses training on difficult motion segments, and an automatic curriculum using a model-based assistive wrench, together enabling dynamic, long-horizon maneuvers. We further provide a procedure for selecting joint-level gains from approximate analytical armature values for closed-chain actuators, along with a refined model of actuators. Trained entirely in simulation with moderate domain randomization, ZEST demonstrates remarkable generality. On Boston Dynamics' Atlas humanoid, ZEST learns dynamic, multi-contact skills (e.g., army crawl, breakdancing) from motion capture. It transfers expressive dance and scene-interaction skills, such as box-climbing, directly from videos to Atlas and the Unitree G1. Furthermore, it extends across morphologies to the Spot quadruped, enabling acrobatics, such as a continuous backflip, through animation. Together, these results demonstrate robust zero-shot deployment across heterogeneous data sources and embodiments, establishing ZEST as a scalable interface between biological movements and their robotic counterparts.
The estimation of abundance and density in unmarked populations of great apes relies on statistical frameworks that require animal-to-camera distance measurements. In practice, acquiring these distances depends on labour-intensive manual interpretation of animal observations across large camera trap video corpora. This study introduces and evaluates an only sparsely explored alternative: the integration of computer vision-based monocular depth estimation (MDE) pipelines directly into ecological camera trap workflows for great ape conservation. Using a real-world dataset of 220 camera trap videos documenting a wild chimpanzee population, we combine two MDE models, Dense Prediction Transformers and Depth Anything, with multiple distance sampling strategies. These components are used to generate detection distance estimates, from which population density and abundance are inferred. Comparative analysis against manually derived ground-truth distances shows that calibrated DPT consistently outperforms Depth Anything. This advantage is observed in both distance estimation accuracy and downstream density and abundance inference. Nevertheless, both models exhibit systematic biases. We show that, given complex forest environments, they tend to overestimate detection distances and consequently underestimate density and abundance relative to conventional manual approaches. We further find that failures in animal detection across distance ranges are a primary factor limiting estimation accuracy. Overall, this work provides a case study that shows MDE-driven camera trap distance sampling is a viable and practical alternative to manual distance estimation. The proposed approach yields population estimates within 22% of those obtained using traditional methods.
Body condition score (BCS) is a widely used indicator of body energy status and is closely associated with metabolic status, reproductive performance, and health in dairy cattle; however, conventional visual scoring is subjective and labor-intensive. Computer vision approaches have been applied to BCS prediction, with depth images widely used because they capture geometric information independent of coat color and texture. More recently, three-dimensional point cloud data have attracted increasing interest due to their ability to represent richer geometric characteristics of animal morphology, but direct head-to-head comparisons with depth image-based approaches remain limited. In this study, we compared top-view depth image and point cloud data for BCS prediction under four settings: 1) unsegmented raw data, 2) segmented full-body data, 3) segmented hindquarter data, and 4) handcrafted feature data. Prediction models were evaluated using data from 1,020 dairy cows collected on a commercial farm, with cow-level cross-validation to prevent data leakage. Depth image-based models consistently achieved higher accuracy than point cloud-based models when unsegmented raw data and segmented full-body data were used, whereas comparable performance was observed when segmented hindquarter data were used. Both depth image and point cloud approaches showed reduced accuracy when handcrafted feature data were employed compared with the other settings. Overall, point cloud-based predictions were more sensitive to noise and model architecture than depth image-based predictions. Taken together, these results indicate that three-dimensional point clouds do not provide a consistent advantage over depth images for BCS prediction in dairy cattle under the evaluated conditions.