We present Interfaze, a system that treats modern LLM applications as a problem of building and acting over context, not just picking the right monolithic model. Instead of a single transformer, we combine (i) a stack of heterogeneous DNNs paired with small language models as perception modules for OCR involving complex PDFs, charts and diagrams, and multilingual ASR with (ii) a context-construction layer that crawls, indexes, and parses external sources (web pages, code, PDFs) into compact structured state, and (iii) an action layer that can browse, retrieve, execute code in a sandbox, and drive a headless browser for dynamic web pages. A thin controller sits on top of this stack and exposes a single, OpenAI-style endpoint: it decides which small models and actions to run and always forwards the distilled context to a user-selected LLM that produces the final response. On this architecture, Interfaze-Beta achieves 83.6% on MMLU-Pro, 91.4% on MMLU, 81.3% on GPQA-Diamond, 57.8% on LiveCodeBench v5, and 90.0% on AIME-2025, along with strong multimodal scores on MMMU (val) (77.3%), AI2D (91.5%), ChartQA (90.9%), and Common Voice v16 (90.8%). We show that most queries are handled primarily by the small-model and tool stack, with the large LLM operating only on distilled context, yielding competitive accuracy while shifting the bulk of computation away from the most expensive and monolithic models.
We introduce Speech-to-Spatial, a referent disambiguation framework that converts verbal remote-assistance instructions into spatially grounded AR guidance. Unlike prior systems that rely on additional cues (e.g., gesture, gaze) or manual expert annotations, Speech-to-Spatial infers the intended target solely from spoken references (speech input). Motivated by our formative study of speech referencing patterns, we characterize recurring ways people specify targets (Direct Attribute, Relational, Remembrance, and Chained) and ground them to our object-centric relational graph. Given an utterance, referent cues are parsed and rendered as persistent in-situ AR visual guidance, reducing iterative micro-guidance ("a bit more to the right", "now, stop.") during remote guidance. We demonstrate the use cases of our system with remote guided assistance and intent disambiguation scenarios. Our evaluation shows that Speechto-Spatial improves task efficiency, reduces cognitive load, and enhances usability compared to a conventional voice-only baseline, transforming disembodied verbal instruction into visually explainable, actionable guidance on a live shared view.
Telecommunication networks are increasingly expected to operate autonomously while supporting heterogeneous services with diverse and often conflicting intents -- that is, performance objectives, constraints, and requirements specific to each service. However, transforming high-level intents -- such as ultra-low latency, high throughput, or energy efficiency -- into concrete control actions (i.e., low-level actuator commands) remains beyond the capability of existing heuristic approaches. This work introduces an Agentic AI system for intent-driven autonomous networks, structured around three specialized agents. A supervisory interpreter agent, powered by language models, performs both lexical parsing of intents into executable optimization templates and cognitive refinement based on feedback, constraint feasibility, and evolving network conditions. An optimizer agent converts these templates into tractable optimization problems, analyzes trade-offs, and derives preferences across objectives. Lastly, a preference-driven controller agent, based on multi-objective reinforcement learning, leverages these preferences to operate near the Pareto frontier of network performance that best satisfies the original intent. Collectively, these agents enable networks to autonomously interpret, reason over, adapt to, and act upon diverse intents and network conditions in a scalable manner.
While Large Vision-Language Models (LVLMs) have significantly advanced GUI agents' capabilities in parsing textual instructions, interpreting screen content, and executing tasks, a critical challenge persists: the irreversibility of agent operations, where a single erroneous action can trigger catastrophic deviations. To address this, we propose the GUI Action Critic's Data Flywheel System (GAIA), a training framework that enables the models to have iterative critic capabilities, which are used to improve the Test-Time Scaling (TTS) of basic GUI agents' performance. Specifically, we train an Intuitive Critic Model (ICM) using positive and negative action examples from a base agent first. This critic evaluates the immediate correctness of the agent's intended actions, thereby selecting operations with higher success probability. Then, the initial critic guides agent actions to collect refined positive/negative samples, initiating the self-improving cycle. The augmented data then trains a second-round critic with enhanced discernment capability. We conduct experiments on various datasets and demonstrate that the proposed ICM can improve the test-time performance of various closed-source and open-source models, and the performance can be gradually improved as the data is recycled. The code and dataset will be publicly released.
Diffusion Policy has dominated action generation due to its strong capabilities for modeling multi-modal action distributions, but its multi-step denoising processes make it impractical for real-time visuomotor control. Existing caching-based acceleration methods typically rely on $\textit{static}$ schedules that fail to adapt to the $\textit{dynamics}$ of robot-environment interactions, thereby leading to suboptimal performance. In this paper, we propose $\underline{\textbf{S}}$parse $\underline{\textbf{A}}$ction$\underline{\textbf{G}}$en ($\textbf{SAG}$) for extremely sparse action generation. To accommodate the iterative interactions, SAG customizes a rollout-adaptive prune-then-reuse mechanism that first identifies prunable computations globally and then reuses cached activations to substitute them during action diffusion. To capture the rollout dynamics, SAG parameterizes an observation-conditioned diffusion pruner for environment-aware adaptation and instantiates it with a highly parameter- and inference-efficient design for real-time prediction. Furthermore, SAG introduces a one-for-all reusing strategy that reuses activations across both timesteps and blocks in a zig-zag manner, minimizing the global redundancy. Extensive experiments on multiple robotic benchmarks demonstrate that SAG achieves up to 4$\times$ generation speedup without sacrificing performance. Project Page: https://sparse-actiongen.github.io/.
A molecule's properties are fundamentally determined by its composition and structure encoded in its molecular graph. Thus, reasoning about molecular properties requires the ability to parse and understand the molecular graph. Large Language Models (LLMs) are increasingly applied to chemistry, tackling tasks such as molecular name conversion, captioning, text-guided generation, and property or reaction prediction. Most existing benchmarks emphasize general chemical knowledge, rely on literature or surrogate labels that risk leakage or bias, or reduce evaluation to multiple-choice questions. We introduce MolecularIQ, a molecular structure reasoning benchmark focused exclusively on symbolically verifiable tasks. MolecularIQ enables fine-grained evaluation of reasoning over molecular graphs and reveals capability patterns that localize model failures to specific tasks and molecular structures. This provides actionable insights into the strengths and limitations of current chemistry LLMs and guides the development of models that reason faithfully over molecular structure.
Understanding student behavior in the classroom is essential to improve both pedagogical quality and student engagement. Existing methods for predicting student engagement typically require substantial annotated data to model the diversity of student behaviors, yet privacy concerns often restrict researchers to their own proprietary datasets. Moreover, the classroom context, represented in peers' actions, is ignored. To address the aforementioned limitation, we propose a novel three-stage framework for video-based student engagement measurement. First, we explore the few-shot adaptation of the vision-language model for student action recognition, which is fine-tuned to distinguish among action categories with a few training samples. Second, to handle continuous and unpredictable student actions, we utilize the sliding temporal window technique to divide each student's 2-minute-long video into non-overlapping segments. Each segment is assigned an action category via the fine-tuned VLM model, generating a sequence of action predictions. Finally, we leverage the large language model to classify this entire sequence of actions, together with the classroom context, as belonging to an engaged or disengaged student. The experimental results demonstrate the effectiveness of the proposed approach in identifying student engagement.
The increasing prevalence of malicious Portable Document Format (PDF) files necessitates robust and comprehensive feature extraction techniques for effective detection and analysis. This work presents a unified framework that integrates graph-based, structural, and metadata-driven analysis to generate a rich feature representation for each PDF document. The system extracts text from PDF pages and constructs undirected graphs based on pairwise word relationships, enabling the computation of graph-theoretic features such as node count, edge density, and clustering coefficient. Simultaneously, the framework parses embedded metadata to quantify character distributions, entropy patterns, and inconsistencies across fields such as author, title, and producer. Temporal features are derived from creation and modification timestamps to capture behavioral signatures, while structural elements including, object streams, fonts, and embedded images, are quantified to reflect document complexity. Boolean flags for potentially malicious PDF constructs (e.g., JavaScript, launch actions) are also extracted. Together, these features form a high-dimensional vector representation (170 dimensions) that is well-suited for downstream tasks such as malware classification, anomaly detection, and forensic analysis. The proposed approach is scalable, extensible, and designed to support real-world PDF threat intelligence workflows.6
In embodied artificial intelligence, enabling heterogeneous robot teams to execute long-horizon tasks from high-level instructions remains a critical challenge. While large language models (LLMs) show promise in instruction parsing and preliminary planning, they exhibit limitations in long-term reasoning and dynamic multi-robot coordination. We propose Hierarchical Autonomous Intelligent Multi-Robot Planning(H-AIM), a novel embodied multi-robot task planning framework that addresses these issues through a three-stage cascaded architecture: 1) It leverages an LLM to parse instructions and generate Planning Domain Definition Language (PDDL) problem descriptions, thereby transforming commands into formal planning problems; 2) It combines the semantic reasoning of LLMs with the search capabilities of a classical planner to produce optimized action sequences; 3) It compiles the resulting plan into behavior trees for reactive control. The framework supports dynamically sized heterogeneous robot teams via a shared blackboard mechanism for communication and state synchronization. To validate our approach, we introduce the MACE-THOR benchmark dataset, comprising 42 complex tasks across 8 distinct household layouts. Experimental results demonstrate that H-AIM achieves a remarkable performance improvement, elevating the task success rate from 12% to 55% and boosting the goal condition recall from 32% to 72% against the strongest baseline, LaMMA-P.
Competitive sports require sophisticated tactical analysis, yet combat disciplines like boxing remain underdeveloped in AI-driven analytics due to the complexity of action dynamics and the lack of structured tactical representations. To address this, we present BoxMind, a closed-loop AI expert system validated in elite boxing competition. By defining atomic punch events with precise temporal boundaries and spatial and technical attributes, we parse match footage into 18 hierarchical technical-tactical indicators. We then propose a graph-based predictive model that fuses these explicit technical-tactical profiles with learnable, time-variant latent embeddings to capture the dynamics of boxer matchups. Modeling match outcome as a differentiable function of technical-tactical indicators, we turn winning probability gradients into executable tactical adjustments. Experiments show that the outcome prediction model achieves state-of-the-art performance, with 69.8% accuracy on BoxerGraph test set and 87.5% on Olympic matches. Using this predictive model as a foundation, the system generates strategic recommendations that demonstrate proficiency comparable to human experts. BoxMind is validated through a closed-loop deployment during the 2024 Paris Olympics, directly contributing to the Chinese National Team's historic achievement of three gold and two silver medals. BoxMind establishes a replicable paradigm for transforming unstructured video data into strategic intelligence, bridging the gap between computer vision and decision support in competitive sports.