In this paper, we propose BeamSense, a completely novel approach to implement standard-compliant Wi-Fi sensing applications. Wi-Fi sensing enables game-changing applications in remote healthcare, home entertainment, and home surveillance, among others. However, existing work leverages the manual extraction of channel state information (CSI) from Wi-Fi chips to classify activities, which is not supported by the Wi-Fi standard and hence requires the usage of specialized equipment. On the contrary, BeamSense leverages the standard-compliant beamforming feedback information (BFI) to characterize the propagation environment. Conversely from CSI, the BFI (i) can be easily recorded without any firmware modification, and (ii) captures the multiple channels between the access point and the stations, thus providing much better sensitivity. BeamSense includes a novel cross-domain few-shot learning (FSL) algorithm to handle unseen environments and subjects with few additional data points. We evaluate BeamSense through an extensive data collection campaign with three subjects performing twenty different activities in three different environments. We show that our BFI-based approach achieves about 10% more accuracy when compared to CSI-based prior work, while our FSL strategy improves accuracy by up to 30% and 80% when compared with state-of-the-art cross-domain algorithms.
It is easy for the electroencephalogram (EEG) signal to be incomplete due to packet loss, electrode falling off, etc. This paper proposed a Cascade Transformer architecture and a loss weighting method for the single-channel EEG completion, which reduced the Normalized Root Mean Square Error (NRMSE) by 2.8% and 8.5%, respectively. With the percentage of the missing points ranging from 1% to 50%, the proposed method achieved a NRMSE from 0.026 to 0.063, which aligned with the state-of-the-art multi-channel completion solution. The proposed work shows it's feasible to perform the EEG completion with only single-channel EEG.
This paper proposes SaleNet - an end-to-end convolutional neural network (CNN) for sustained attention level evaluation using prefrontal electroencephalogram (EEG). A bias-driven pruning method is proposed together with group convolution, global average pooling (GAP), near-zero pruning, weight clustering and quantization for the model compression, achieving a total compression ratio of 183.11x. The compressed SaleNet obtains a state-of-the-art subject-independent sustained attention level classification accuracy of 84.2% on the recorded 6-subject EEG database in this work. The SaleNet is implemented on a Artix-7 FPGA with a competitive power consumption of 0.11 W and an energy-efficiency of 8.19 GOps/W.