Feed-forward multi-frame 3D reconstruction models often degrade on videos with object motion. Global-reference becomes ambiguous under multiple motions, while the local pointmap relies heavily on estimated relative poses and can drift, causing cross-frame misalignment and duplicated structures. We propose TrajVG, a reconstruction framework that makes cross-frame 3D correspondence an explicit prediction by estimating camera-coordinate 3D trajectories. We couple sparse trajectories, per-frame local point maps, and relative camera poses with geometric consistency objectives: (i) bidirectional trajectory-pointmap consistency with controlled gradient flow, and (ii) a pose consistency objective driven by static track anchors that suppresses gradients from dynamic regions. To scale training to in-the-wild videos where 3D trajectory labels are scarce, we reformulate the same coupling constraints into self-supervised objectives using only pseudo 2D tracks, enabling unified training with mixed supervision. Extensive experiments across 3D tracking, pose estimation, pointmap reconstruction, and video depth show that TrajVG surpasses the current feedforward performance baseline.
Referring Multi-Object Tracking (RMOT) aims to track specific targets based on language descriptions and is vital for interactive AI systems such as robotics and autonomous driving. However, existing RMOT models rely solely on 2D RGB data, making it challenging to accurately detect and associate targets characterized by complex spatial semantics (e.g., ``the person closest to the camera'') and to maintain reliable identities under severe occlusion, due to the absence of explicit 3D spatial information. In this work, we propose a novel task, RGBD Referring Multi-Object Tracking (DRMOT), which explicitly requires models to fuse RGB, Depth (D), and Language (L) modalities to achieve 3D-aware tracking. To advance research on the DRMOT task, we construct a tailored RGBD referring multi-object tracking dataset, named DRSet, designed to evaluate models' spatial-semantic grounding and tracking capabilities. Specifically, DRSet contains RGB images and depth maps from 187 scenes, along with 240 language descriptions, among which 56 descriptions incorporate depth-related information. Furthermore, we propose DRTrack, a MLLM-guided depth-referring tracking framework. DRTrack performs depth-aware target grounding from joint RGB-D-L inputs and enforces robust trajectory association by incorporating depth cues. Extensive experiments on the DRSet dataset demonstrate the effectiveness of our framework.
Object pose estimation is a fundamental problem in computer vision and plays a critical role in virtual reality and embodied intelligence, where agents must understand and interact with objects in 3D space. Recently, score based generative models have to some extent solved the rotational symmetry ambiguity problem in category level pose estimation, but their efficiency remains limited by the high sampling cost of score-based diffusion. In this work, we propose a new framework, RFM-Pose, that accelerates category-level 6D object pose generation while actively evaluating sampled hypotheses. To improve sampling efficiency, we adopt a flow-matching generative model and generate pose candidates along an optimal transport path from a simple prior to the pose distribution. To further refine these candidates, we cast the flow-matching sampling process as a Markov decision process and apply proximal policy optimization to fine-tune the sampling policy. In particular, we interpret the flow field as a learnable policy and map an estimator to a value network, enabling joint optimization of pose generation and hypothesis scoring within a reinforcement learning framework. Experiments on the REAL275 benchmark demonstrate that RFM-Pose achieves favorable performance while significantly reducing computational cost. Moreover, similar to prior work, our approach can be readily adapted to object pose tracking and attains competitive results in this setting.
Outside-in multi-camera perception is increasingly important in indoor environments, where networks of static cameras must support multi-target tracking under occlusion and heterogeneous viewpoints. We evaluate Sparse4D, a query-based spatiotemporal 3D detection and tracking framework that fuses multi-view features in a shared world frame and propagates sparse object queries via instance memory. We study reduced input frame rates, post-training quantization (INT8 and FP8), transfer to the WILDTRACK benchmark, and Transformer Engine mixed-precision fine-tuning. To better capture identity stability, we report Average Track Duration (AvgTrackDur), which measures identity persistence in seconds. Sparse4D remains stable under moderate FPS reductions, but below 2 FPS, identity association collapses even when detections are stable. Selective quantization of the backbone and neck offers the best speed-accuracy trade-off, while attention-related modules are consistently sensitive to low precision. On WILDTRACK, low-FPS pretraining yields large zero-shot gains over the base checkpoint, while small-scale fine-tuning provides limited additional benefit. Transformer Engine mixed precision reduces latency and improves camera scalability, but can destabilize identity propagation, motivating stability-aware validation.
Real-world scenes are inherently crowded. Hence, estimating 3D poses of all nearby humans, tracking their movements over time, and understanding their activities within social and environmental contexts are essential for many applications, such as autonomous driving, robot perception, robot navigation, and human-robot interaction. However, most existing 3D human pose estimation datasets primarily focus on single-person scenes or are collected in controlled laboratory environments, which restricts their relevance to real-world applications. To bridge this gap, we introduce JRDB-Pose3D, which captures multi-human indoor and outdoor environments from a mobile robotic platform. JRDB-Pose3D provides rich 3D human pose annotations for such complex and dynamic scenes, including SMPL-based pose annotations with consistent body-shape parameters and track IDs for each individual over time. JRDB-Pose3D contains, on average, 5-10 human poses per frame, with some scenes featuring up to 35 individuals simultaneously. The proposed dataset presents unique challenges, including frequent occlusions, truncated bodies, and out-of-frame body parts, which closely reflect real-world environments. Moreover, JRDB-Pose3D inherits all available annotations from the JRDB dataset, such as 2D pose, information about social grouping, activities, and interactions, full-scene semantic masks with consistent human- and object-level tracking, and detailed annotations for each individual, such as age, gender, and race, making it a holistic dataset for a wide range of downstream perception and human-centric understanding tasks.
Accurate, reproducible burn assessment is critical for treatment planning, healing monitoring, and medico-legal documentation, yet conventional visual inspection and 2D photography are subjective and limited for longitudinal comparison. This paper presents an AI-enabled burn assessment and management platform that integrates multi-view photogrammetry, 3D surface reconstruction, and deep learning-based segmentation within a structured clinical workflow. Using standard multi-angle images from consumer-grade cameras, the system reconstructs patient-specific 3D burn surfaces and maps burn regions onto anatomy to compute objective metrics in real-world units, including surface area, TBSA, depth-related geometric proxies, and volumetric change. Successive reconstructions are spatially aligned to quantify healing progression over time, enabling objective tracking of wound contraction and depth reduction. The platform also supports structured patient intake, guided image capture, 3D analysis and visualization, treatment recommendations, and automated report generation. Simulation-based evaluation demonstrates stable reconstructions, consistent metric computation, and clinically plausible longitudinal trends, supporting a scalable, non-invasive approach to objective, geometry-aware burn assessment and decision support in acute and outpatient care.
Accurate depth estimation is fundamental to 3D perception in autonomous driving, supporting tasks such as detection, tracking, and motion planning. However, monocular camera-based 3D detection suffers from depth ambiguity and reduced robustness under challenging conditions. Radar provides complementary advantages such as resilience to poor lighting and adverse weather, but its sparsity and low resolution limit its direct use in detection frameworks. This motivates the need for effective Radar-camera fusion with improved preprocessing and depth estimation strategies. We propose an end-to-end framework that enhances monocular 3D object detection through two key components. First, we introduce InstaRadar, an instance segmentation-guided expansion method that leverages pre-trained segmentation masks to enhance Radar density and semantic alignment, producing a more structured representation. InstaRadar achieves state-of-the-art results in Radar-guided depth estimation, showing its effectiveness in generating high-quality depth features. Second, we integrate the pre-trained RCDPT into the BEVDepth framework as a replacement for its depth module. With InstaRadar-enhanced inputs, the RCDPT integration consistently improves 3D detection performance. Overall, these components yield steady gains over the baseline BEVDepth model, demonstrating the effectiveness of InstaRadar and the advantage of explicit depth supervision in 3D object detection. Although the framework lags behind Radar-camera fusion models that directly extract BEV features, since Radar serves only as guidance rather than an independent feature stream, this limitation highlights potential for improvement. Future work will extend InstaRadar to point cloud-like representations and integrate a dedicated Radar branch with temporal cues for enhanced BEV fusion.
Shared control improves Human-Robot Interaction by reducing the user's workload and increasing the robot's autonomy. It allows robots to perform tasks under the user's supervision. Current eye-tracking-driven approaches face several challenges. These include accuracy issues in 3D gaze estimation and difficulty interpreting gaze when differentiating between multiple tasks. We present an eye-tracking-driven control framework, aimed at enabling individuals with severe physical disabilities to perform daily tasks independently. Our system uses task pictograms as fiducial markers combined with a feature matching approach that transmits data of the selected object to accomplish necessary task related measurements with an eye-in-hand configuration. This eye-tracking control does not require knowledge of the user's position in relation to the object. The framework correctly interpreted object and task selection in up to 97.9% of measurements. Issues were found in the evaluation, that were improved and shared as lessons learned. The open-source framework can be adapted to new tasks and objects due to the integration of state-of-the-art object detection models.
The safety validation of autonomous robotic vehicles hinges on systematically testing their planning and control stacks against rare, safety-critical scenarios. Mining these long-tail events from massive real-world driving logs is therefore a critical step in the robotic development lifecycle. The goal of the Scenario Mining task is to retrieve useful information to enable targeted re-simulation, regression testing, and failure analysis of the robot's decision-making algorithms. RefAV, introduced by the Argoverse team, is an end-to-end framework that uses large language models (LLMs) to spatially and temporally localize scenarios described in natural language. However, this process performs retrieval on trajectory labels, ignoring the direct connection between natural language and raw RGB images, which runs counter to the intuition of video retrieval; it also depends on the quality of upstream 3D object detection and tracking. Further, inaccuracies in trajectory data lead to inaccuracies in downstream spatial and temporal localization. To address these issues, we propose Robust Scenario Mining for Robotic Autonomy from Coarse to Fine (SMc2f), a coarse-to-fine pipeline that employs vision-language models (VLMs) for coarse image-text filtering, builds a database of successful mining cases on top of RefAV and automatically retrieves exemplars to few-shot condition the LLM for more robust retrieval, and introduces text-trajectory contrastive learning to pull matched pairs together and push mismatched pairs apart in a shared embedding space, yielding a fine-grained matcher that refines the LLM's candidate trajectories. Experiments on public datasets demonstrate substantial gains in both retrieval quality and efficiency.
Accurate 3D object perception and multi-target multi-camera (MTMC) tracking are fundamental for the digital transformation of industrial infrastructure. However, transitioning "inside-out" autonomous driving models to "outside-in" static camera networks presents significant challenges due to heterogeneous camera placements and extreme occlusion. In this paper, we present an adapted Sparse4D framework specifically optimized for large-scale infrastructure environments. Our system leverages absolute world-coordinate geometric priors and introduces an occlusion-aware ReID embedding module to maintain identity stability across distributed sensor networks. To bridge the Sim2Real domain gap without manual labeling, we employ a generative data augmentation strategy using the NVIDIA COSMOS framework, creating diverse environmental styles that enhance the model's appearance-invariance. Evaluated on the AI City Challenge 2025 benchmark, our camera-only framework achieves a state-of-the-art HOTA of $45.22$. Furthermore, we address real-time deployment constraints by developing an optimized TensorRT plugin for Multi-Scale Deformable Aggregation (MSDA). Our hardware-accelerated implementation achieves a $2.15\times$ speedup on modern GPU architectures, enabling a single Blackwell-class GPU to support over 64 concurrent camera streams.