Topic:3D Medical Imaging Segmentation
What is 3D Medical Imaging Segmentation? 3D medical imaging segmentation is the process of segmenting anatomical structures or lesions in 3D medical images.
Papers and Code
Jun 26, 2025
Abstract:Medical imaging datasets often contain heterogeneous biases ranging from erroneous labels to inconsistent labeling styles. Such biases can negatively impact deep segmentation networks performance. Yet, the identification and characterization of such biases is a particularly tedious and challenging task. In this paper, we introduce HyperSORT, a framework using a hyper-network predicting UNets' parameters from latent vectors representing both the image and annotation variability. The hyper-network parameters and the latent vector collection corresponding to each data sample from the training set are jointly learned. Hence, instead of optimizing a single neural network to fit a dataset, HyperSORT learns a complex distribution of UNet parameters where low density areas can capture noise-specific patterns while larger modes robustly segment organs in differentiated but meaningful manners. We validate our method on two 3D abdominal CT public datasets: first a synthetically perturbed version of the AMOS dataset, and TotalSegmentator, a large scale dataset containing real unknown biases and errors. Our experiments show that HyperSORT creates a structured mapping of the dataset allowing the identification of relevant systematic biases and erroneous samples. Latent space clusters yield UNet parameters performing the segmentation task in accordance with the underlying learned systematic bias. The code and our analysis of the TotalSegmentator dataset are made available: https://github.com/ImFusionGmbH/HyperSORT
* Accepted at MICCAI 2025
Via

Jun 25, 2025
Abstract:Medical image segmentation has greatly aided medical diagnosis, with U-Net based architectures and nnU-Net providing state-of-the-art performance. There have been numerous general promptable models and medical variations introduced in recent years, but there is currently a lack of evaluation and comparison of these models across a variety of prompt qualities on a common medical dataset. This research uses Segment Anything Model (SAM), Segment Anything Model 2 (SAM 2), MedSAM, SAM-Med-3D, and nnU-Net to obtain zero-shot inference on the BraTS 2023 adult glioma and pediatrics dataset across multiple prompt qualities for both points and bounding boxes. Several of these models exhibit promising Dice scores, particularly SAM and SAM 2 achieving scores of up to 0.894 and 0.893, respectively when given extremely accurate bounding box prompts which exceeds nnU-Net's segmentation performance. However, nnU-Net remains the dominant medical image segmentation network due to the impracticality of providing highly accurate prompts to the models. The model and prompt evaluation, as well as the comparison, are extended through fine-tuning SAM, SAM 2, MedSAM, and SAM-Med-3D on the pediatrics dataset. The improvements in point prompt performance after fine-tuning are substantial and show promise for future investigation, but are unable to achieve better segmentation than bounding boxes or nnU-Net.
Via

Jun 24, 2025
Abstract:Although new vision foundation models such as Segment Anything Model 2 (SAM2) have significantly enhanced zero-shot image segmentation capabilities, reliance on human-provided prompts poses significant challenges in adapting SAM2 to medical image segmentation tasks. Moreover, SAM2's performance in medical image segmentation was limited by the domain shift issue, since it was originally trained on natural images and videos. To address these challenges, we proposed SAM2 with support-set guided prompting (SAM2-SGP), a framework that eliminated the need for manual prompts. The proposed model leveraged the memory mechanism of SAM2 to generate pseudo-masks using image-mask pairs from a support set via a Pseudo-mask Generation (PMG) module. We further introduced a novel Pseudo-mask Attention (PMA) module, which used these pseudo-masks to automatically generate bounding boxes and enhance localized feature extraction by guiding attention to relevant areas. Furthermore, a low-rank adaptation (LoRA) strategy was adopted to mitigate the domain shift issue. The proposed framework was evaluated on both 2D and 3D datasets across multiple medical imaging modalities, including fundus photography, X-ray, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasound. The results demonstrated a significant performance improvement over state-of-the-art models, such as nnUNet and SwinUNet, as well as foundation models, such as SAM2 and MedSAM2, underscoring the effectiveness of the proposed approach. Our code is publicly available at https://github.com/astlian9/SAM_Support.
Via

Jun 17, 2025
Abstract:Advances in treatment technology now allow for the use of customizable 3D-printed hydrogel wound dressings for patients with osteoradionecrosis (ORN) of the jaw (ONJ). Meanwhile, deep learning has enabled precise segmentation of 3D medical images using tools like nnUNet. However, the scarcity of labeled data in ONJ imaging makes supervised training impractical. This study aims to develop an unsupervised training approach for automatically identifying anomalies in imaging scans. We propose a novel two-stage training pipeline. In the first stage, a VQ-GAN is trained to accurately reconstruct normal subjects. In the second stage, random cube masking and ONJ-specific masking are applied to train a new encoder capable of recovering the data. The proposed method achieves successful segmentation on both simulated and real patient data. This approach provides a fast initial segmentation solution, reducing the burden of manual labeling. Additionally, it has the potential to be directly used for 3D printing when combined with hand-tuned post-processing.
Via

Jun 13, 2025
Abstract:Automatic segmentation of anatomical structures is critical in medical image analysis, aiding diagnostics and treatment planning. Skin segmentation plays a key role in registering and visualising multimodal imaging data. 3D skin segmentation enables applications in personalised medicine, surgical planning, and remote monitoring, offering realistic patient models for treatment simulation, procedural visualisation, and continuous condition tracking. This paper analyses and compares algorithmic and AI-driven skin segmentation approaches, emphasising key factors to consider when selecting a strategy based on data availability and application requirements. We evaluate an iterative region-growing algorithm and the TotalSegmentator, a deep learning-based approach, across different imaging modalities and anatomical regions. Our tests show that AI segmentation excels in automation but struggles with MRI due to its CT-based training, while the graphics-based method performs better for MRIs but introduces more noise. AI-driven segmentation also automates patient bed removal in CT, whereas the graphics-based method requires manual intervention.
Via

Jun 12, 2025
Abstract:Recent advances in medical imaging have established deep learning-based segmentation as the predominant approach, though it typically requires large amounts of manually annotated data. However, obtaining annotations for intracranial hemorrhage (ICH) remains particularly challenging due to the tedious and costly labeling process. Semi-supervised learning (SSL) has emerged as a promising solution to address the scarcity of labeled data, especially in volumetric medical image segmentation. Unlike conventional SSL methods that primarily focus on high-confidence pseudo-labels or consistency regularization, we propose SWDL-Net, a novel SSL framework that exploits the complementary advantages of Laplacian pyramid and deep convolutional upsampling. The Laplacian pyramid excels at edge sharpening, while deep convolutions enhance detail precision through flexible feature mapping. Our framework achieves superior segmentation of lesion details and boundaries through a difference learning mechanism that effectively integrates these complementary approaches. Extensive experiments on a 271-case ICH dataset and public benchmarks demonstrate that SWDL-Net outperforms current state-of-the-art methods in scenarios with only 2% labeled data. Additional evaluations on the publicly available Brain Hemorrhage Segmentation Dataset (BHSD) with 5% labeled data further confirm the superiority of our approach. Code and data have been released at https://github.com/SIAT-CT-LAB/SWDL.
* 11 pages, 4 figures, 6 Tables
Via

Jun 05, 2025
Abstract:Accurate 3D medical image segmentation demands architectures capable of reconciling global context modeling with spatial topology preservation. While State Space Models (SSMs) like Mamba show potential for sequence modeling, existing medical SSMs suffer from encoder-decoder incompatibility: the encoder's 1D sequence flattening compromises spatial structures, while conventional decoders fail to leverage Mamba's state propagation. We present DM-SegNet, a Dual-Mamba architecture integrating directional state transitions with anatomy-aware hierarchical decoding. The core innovations include a quadri-directional spatial Mamba module employing four-directional 3D scanning to maintain anatomical spatial coherence, a gated spatial convolution layer that enhances spatially sensitive feature representation prior to state modeling, and a Mamba-driven decoding framework enabling bidirectional state synchronization across scales. Extensive evaluation on two clinically significant benchmarks demonstrates the efficacy of DM-SegNet: achieving state-of-the-art Dice Similarity Coefficient (DSC) of 85.44% on the Synapse dataset for abdominal organ segmentation and 90.22% on the BraTS2023 dataset for brain tumor segmentation.
Via

Jun 11, 2025
Abstract:We introduce a novel framework for learning vector representations of tree-structured geometric data focusing on 3D vascular networks. Our approach employs two sequentially trained Transformer-based autoencoders. In the first stage, the Vessel Autoencoder captures continuous geometric details of individual vessel segments by learning embeddings from sampled points along each curve. In the second stage, the Vessel Tree Autoencoder encodes the topology of the vascular network as a single vector representation, leveraging the segment-level embeddings from the first model. A recursive decoding process ensures that the reconstructed topology is a valid tree structure. Compared to 3D convolutional models, this proposed approach substantially lowers GPU memory requirements, facilitating large-scale training. Experimental results on a 2D synthetic tree dataset and a 3D coronary artery dataset demonstrate superior reconstruction fidelity, accurate topology preservation, and realistic interpolations in latent space. Our scalable framework, named VeTTA, offers precise, flexible, and topologically consistent modeling of anatomical tree structures in medical imaging.
Via

Jun 06, 2025
Abstract:In the field of 3D medical imaging, accurately extracting and representing the blood vessels with curvilinear structures holds paramount importance for clinical diagnosis. Previous methods have commonly relied on discrete representation like mask, often resulting in local fractures or scattered fragments due to the inherent limitations of the per-pixel classification paradigm. In this work, we introduce DeformCL, a new continuous representation based on Deformable Centerlines, where centerline points act as nodes connected by edges that capture spatial relationships. Compared with previous representations, DeformCL offers three key advantages: natural connectivity, noise robustness, and interaction facility. We present a comprehensive training pipeline structured in a cascaded manner to fully exploit these favorable properties of DeformCL. Extensive experiments on four 3D vessel segmentation datasets demonstrate the effectiveness and superiority of our method. Furthermore, the visualization of curved planar reformation images validates the clinical significance of the proposed framework. We release the code in https://github.com/barry664/DeformCL
* Accepted by CVPR 2025
Via

May 24, 2025
Abstract:3D medical image segmentation is vital for clinical diagnosis and treatment but is challenged by high-dimensional data and complex spatial dependencies. Traditional single-modality networks, such as CNNs and Transformers, are often limited by computational inefficiency and constrained contextual modeling in 3D settings. We introduce a novel multimodal framework that leverages Mamba and Kolmogorov-Arnold Networks (KAN) as an efficient backbone for long-sequence modeling. Our approach features three key innovations: First, an EGSC (Enhanced Gated Spatial Convolution) module captures spatial information when unfolding 3D images into 1D sequences. Second, we extend Group-Rational KAN (GR-KAN), a Kolmogorov-Arnold Networks variant with rational basis functions, into 3D-Group-Rational KAN (3D-GR-KAN) for 3D medical imaging - its first application in this domain - enabling superior feature representation tailored to volumetric data. Third, a dual-branch text-driven strategy leverages CLIP's text embeddings: one branch swaps one-hot labels for semantic vectors to preserve inter-organ semantic relationships, while the other aligns images with detailed organ descriptions to enhance semantic alignment. Experiments on the Medical Segmentation Decathlon (MSD) and KiTS23 datasets show our method achieving state-of-the-art performance, surpassing existing approaches in accuracy and efficiency. This work highlights the power of combining advanced sequence modeling, extended network architectures, and vision-language synergy to push forward 3D medical image segmentation, delivering a scalable solution for clinical use. The source code is openly available at https://github.com/yhy-whu/TK-Mamba.
Via
