Abstract:Despite significant progress in Video Large Language Models (Video-LLMs) for offline video understanding, existing online Video-LLMs typically struggle to simultaneously process continuous frame-by-frame inputs and determine optimal response timing, often compromising real-time responsiveness and narrative coherence. To address these limitations, we introduce LiveStar, a pioneering live streaming assistant that achieves always-on proactive responses through adaptive streaming decoding. Specifically, LiveStar incorporates: (1) a training strategy enabling incremental video-language alignment for variable-length video streams, preserving temporal consistency across dynamically evolving frame sequences; (2) a response-silence decoding framework that determines optimal proactive response timing via a single forward pass verification; (3) memory-aware acceleration via peak-end memory compression for online inference on 10+ minute videos, combined with streaming key-value cache to achieve 1.53x faster inference. We also construct an OmniStar dataset, a comprehensive dataset for training and benchmarking that encompasses 15 diverse real-world scenarios and 5 evaluation tasks for online video understanding. Extensive experiments across three benchmarks demonstrate LiveStar's state-of-the-art performance, achieving an average 19.5% improvement in semantic correctness with 18.1% reduced timing difference compared to existing online Video-LLMs, while improving FPS by 12.0% across all five OmniStar tasks. Our model and dataset can be accessed at https://github.com/yzy-bupt/LiveStar.




Abstract:A primary challenge in ITE estimation is sample selection bias. Traditional approaches utilize treatment regularization techniques such as the Integral Probability Metrics (IPM), re-weighting, and propensity score modeling to mitigate this bias. However, these regularizations may introduce undesirable information loss and limit the performance of the model. Furthermore, treatment effects vary across different external contexts, and the existing methods are insufficient in fully interacting with and utilizing these contextual features. To address these issues, we propose a Context-Aware uplift model based on the Two-Stage training approach (TSCAN), comprising CAN-U and CAN-D sub-models. In the first stage, we train an uplift model, called CAN-U, which includes the treatment regularizations of IPM and propensity score prediction, to generate a complete dataset with counterfactual uplift labels. In the second stage, we train a model named CAN-D, which utilizes an isotonic output layer to directly model uplift effects, thereby eliminating the reliance on the regularization components. CAN-D adaptively corrects the errors estimated by CAN-U through reinforcing the factual samples, while avoiding the negative impacts associated with the aforementioned regularizations. Additionally, we introduce a Context-Aware Attention Layer throughout the two-stage process to manage the interactions between treatment, merchant, and contextual features, thereby modeling the varying treatment effect in different contexts. We conduct extensive experiments on two real-world datasets to validate the effectiveness of TSCAN. Ultimately, the deployment of our model for real-world merchant diagnosis on one of China's largest online food ordering platforms validates its practical utility and impact.