Abstract:Long-horizon robotic manipulation poses significant challenges for autonomous systems, requiring extended reasoning, precise execution, and robust error recovery across complex sequential tasks. Current approaches, whether based on static planning or end-to-end visuomotor policies, suffer from error accumulation and lack effective verification mechanisms during execution, limiting their reliability in real-world scenarios. We present Agentic Robot, a brain-inspired framework that addresses these limitations through Standardized Action Procedures (SAP)--a novel coordination protocol governing component interactions throughout manipulation tasks. Drawing inspiration from Standardized Operating Procedures (SOPs) in human organizations, SAP establishes structured workflows for planning, execution, and verification phases. Our architecture comprises three specialized components: (1) a large reasoning model that decomposes high-level instructions into semantically coherent subgoals, (2) a vision-language-action executor that generates continuous control commands from real-time visual inputs, and (3) a temporal verifier that enables autonomous progression and error recovery through introspective assessment. This SAP-driven closed-loop design supports dynamic self-verification without external supervision. On the LIBERO benchmark, Agentic Robot achieves state-of-the-art performance with an average success rate of 79.6\%, outperforming SpatialVLA by 6.1\% and OpenVLA by 7.4\% on long-horizon tasks. These results demonstrate that SAP-driven coordination between specialized components enhances both performance and interpretability in sequential manipulation, suggesting significant potential for reliable autonomous systems. Project Github: https://agentic-robot.github.io.
Abstract:With the rapid growth of live streaming services, Crowdsourced Cloud-edge service Platforms (CCPs) are playing an increasingly important role in meeting the increasing demand. Although stream scheduling plays a critical role in optimizing CCPs' revenue, most optimization strategies struggle to achieve practical results due to various anomalies in unstable CCPs. Additionally, the substantial scale of CCPs magnifies the difficulties of anomaly detection in time-sensitive scheduling. To tackle these challenges, this paper proposes Sentinel, a proactive anomaly detection-based scheduling framework. Sentinel models the scheduling process as a two-stage Pre-Post-Scheduling paradigm: in the pre-scheduling stage, Sentinel conducts anomaly detection and constructs a strategy pool; in the post-scheduling stage, upon request arrival, it triggers an appropriate scheduling based on a pre-generated strategy to implement the scheduling process. Extensive experiments on realistic datasets show that Sentinel significantly reduces anomaly frequency by 70%, improves revenue by 74%, and doubles the scheduling speed.
Abstract:Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL). However, these supervised methods require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. While recent efforts have explored unsupervised post-training, their methods are complex and difficult to iterate. In this work, we are the first to investigate the use of GRPO, a stable and scalable online RL algorithm, for enabling continual self-improvement without any external supervision. We propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs. MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that MM-UPT significantly improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3 %$\rightarrow$72.9 % on MathVista, 62.9 %$\rightarrow$68.7 % on We-Math), using standard dataset without ground truth labels. MM-UPT also outperforms prior unsupervised baselines and even approaches the results of supervised GRPO. Furthermore, we show that incorporating synthetic questions, generated solely by MLLM itself, can boost performance as well, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for continual, autonomous enhancement of MLLMs in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
Abstract:Recent advancements in large language models (LLMs) have demonstrated impressive chain-of-thought reasoning capabilities, with reinforcement learning (RL) playing a crucial role in this progress. While "aha moment" patterns--where models exhibit self-correction through reflection--are often attributed to emergent properties from RL, we first demonstrate that these patterns exist in multimodal LLMs (MLLMs) prior to RL training but may not necessarily correlate with improved reasoning performance. Building on these insights, we present a comprehensive study on enhancing multimodal reasoning through a two-stage approach: (1) supervised fine-tuning (SFT) as a cold start with structured chain-of-thought reasoning patterns, followed by (2) reinforcement learning via GRPO to further refine these capabilities. Our extensive experiments show that this combined approach consistently outperforms both SFT-only and RL-only methods across challenging multimodal reasoning benchmarks. The resulting models achieve state-of-the-art performance among open-source MLLMs at both 3B and 7B scales, with our 7B model showing substantial improvements over base models (e.g., 66.3 %$\rightarrow$73.4 % on MathVista, 62.9 %$\rightarrow$70.4 % on We-Math) and our 3B model achieving performance competitive with several 7B models. Overall, this work provides practical guidance for building advanced multimodal reasoning models. Our code is available at https://github.com/waltonfuture/RL-with-Cold-Start.
Abstract:Understanding pragmatics-the use of language in context-is crucial for developing NLP systems capable of interpreting nuanced language use. Despite recent advances in language technologies, including large language models, evaluating their ability to handle pragmatic phenomena such as implicatures and references remains challenging. To advance pragmatic abilities in models, it is essential to understand current evaluation trends and identify existing limitations. In this survey, we provide a comprehensive review of resources designed for evaluating pragmatic capabilities in NLP, categorizing datasets by the pragmatics phenomena they address. We analyze task designs, data collection methods, evaluation approaches, and their relevance to real-world applications. By examining these resources in the context of modern language models, we highlight emerging trends, challenges, and gaps in existing benchmarks. Our survey aims to clarify the landscape of pragmatic evaluation and guide the development of more comprehensive and targeted benchmarks, ultimately contributing to more nuanced and context-aware NLP models.
Abstract:We explore the application of Vision Transformer (ViT) for handwritten text recognition. The limited availability of labeled data in this domain poses challenges for achieving high performance solely relying on ViT. Previous transformer-based models required external data or extensive pre-training on large datasets to excel. To address this limitation, we introduce a data-efficient ViT method that uses only the encoder of the standard transformer. We find that incorporating a Convolutional Neural Network (CNN) for feature extraction instead of the original patch embedding and employ Sharpness-Aware Minimization (SAM) optimizer to ensure that the model can converge towards flatter minima and yield notable enhancements. Furthermore, our introduction of the span mask technique, which masks interconnected features in the feature map, acts as an effective regularizer. Empirically, our approach competes favorably with traditional CNN-based models on small datasets like IAM and READ2016. Additionally, it establishes a new benchmark on the LAM dataset, currently the largest dataset with 19,830 training text lines. The code is publicly available at: https://github.com/YutingLi0606/HTR-VT.
Abstract:This paper studies how large language models (LLMs) can act as effective, high-level creative collaborators and ``muses'' for game design. We model the design of this study after the exercises artists use by looking at amorphous ink splotches for creative inspiration. Our goal is to determine whether AI-assistance can improve, hinder, or provide an alternative quality to games when compared to the creative intents implemented by human designers. The capabilities of LLMs as game designers are stress tested by placing it at the forefront of the decision making process. Three prototype games are designed across 3 different genres: (1) a minimalist base game, (2) a game with features and game feel elements added by a human game designer, and (3) a game with features and feel elements directly implemented from prompted outputs of the LLM, ChatGPT. A user study was conducted and participants were asked to blindly evaluate the quality and their preference of these games. We discuss both the development process of communicating creative intent to an AI chatbot and the synthesized open feedback of the participants. We use this data to determine both the benefits and shortcomings of AI in a more design-centric role.
Abstract:In this paper, we revisit techniques for uncertainty estimation within deep neural networks and consolidate a suite of techniques to enhance their reliability. Our investigation reveals that an integrated application of diverse techniques--spanning model regularization, classifier and optimization--substantially improves the accuracy of uncertainty predictions in image classification tasks. The synergistic effect of these techniques culminates in our novel SURE approach. We rigorously evaluate SURE against the benchmark of failure prediction, a critical testbed for uncertainty estimation efficacy. Our results showcase a consistently better performance than models that individually deploy each technique, across various datasets and model architectures. When applied to real-world challenges, such as data corruption, label noise, and long-tailed class distribution, SURE exhibits remarkable robustness, delivering results that are superior or on par with current state-of-the-art specialized methods. Particularly on Animal-10N and Food-101N for learning with noisy labels, SURE achieves state-of-the-art performance without any task-specific adjustments. This work not only sets a new benchmark for robust uncertainty estimation but also paves the way for its application in diverse, real-world scenarios where reliability is paramount. Our code is available at \url{https://yutingli0606.github.io/SURE/}.
Abstract:This work demonstrates a multi-lens microscopic imaging system that overlaps multiple independent fields of view on a single sensor for high-efficiency automated specimen analysis. Automatic detection, classification and counting of various morphological features of interest is now a crucial component of both biomedical research and disease diagnosis. While convolutional neural networks (CNNs) have dramatically improved the accuracy of counting cells and sub-cellular features from acquired digital image data, the overall throughput is still typically hindered by the limited space-bandwidth product (SBP) of conventional microscopes. Here, we show both in simulation and experiment that overlapped imaging and co-designed analysis software can achieve accurate detection of diagnostically-relevant features for several applications, including counting of white blood cells and the malaria parasite, leading to multi-fold increase in detection and processing throughput with minimal reduction in accuracy.