Abstract:In this paper, we introduce the first comprehensive multilingual sign language dataset named Prompt2Sign, which builds from public data including American Sign Language (ASL) and seven others. Our dataset transforms a vast array of videos into a streamlined, model-friendly format, optimized for training with translation models like seq2seq and text2text. Building on this new dataset, we propose SignLLM, the first multilingual Sign Language Production (SLP) model, which includes two novel multilingual SLP modes that allow for the generation of sign language gestures from input text or prompt. Both of the modes can use a new loss and a module based on reinforcement learning, which accelerates the training by enhancing the model's capability to autonomously sample high-quality data. We present benchmark results of SignLLM, which demonstrate that our model achieves state-of-the-art performance on SLP tasks across eight sign languages.
Abstract:Visual sound source localization poses a significant challenge in identifying the semantic region of each sounding source within a video. Existing self-supervised and weakly supervised source localization methods struggle to accurately distinguish the semantic regions of each sounding object, particularly in multi-source mixtures. These methods often rely on audio-visual correspondence as guidance, which can lead to substantial performance drops in complex multi-source localization scenarios. The lack of access to individual source sounds in multi-source mixtures during training exacerbates the difficulty of learning effective audio-visual correspondence for localization. To address this limitation, in this paper, we propose incorporating the text modality as an intermediate feature guide using tri-modal joint embedding models (e.g., AudioCLIP) to disentangle the semantic audio-visual source correspondence in multi-source mixtures. Our framework, dubbed T-VSL, begins by predicting the class of sounding entities in mixtures. Subsequently, the textual representation of each sounding source is employed as guidance to disentangle fine-grained audio-visual source correspondence from multi-source mixtures, leveraging the tri-modal AudioCLIP embedding. This approach enables our framework to handle a flexible number of sources and exhibits promising zero-shot transferability to unseen classes during test time. Extensive experiments conducted on the MUSIC, VGGSound, and VGGSound-Instruments datasets demonstrate significant performance improvements over state-of-the-art methods.
Abstract:This paper addresses the issue of active speaker detection (ASD) in noisy environments and formulates a robust active speaker detection (rASD) problem. Existing ASD approaches leverage both audio and visual modalities, but non-speech sounds in the surrounding environment can negatively impact performance. To overcome this, we propose a novel framework that utilizes audio-visual speech separation as guidance to learn noise-free audio features. These features are then utilized in an ASD model, and both tasks are jointly optimized in an end-to-end framework. Our proposed framework mitigates residual noise and audio quality reduction issues that can occur in a naive cascaded two-stage framework that directly uses separated speech for ASD, and enables the two tasks to be optimized simultaneously. To further enhance the robustness of the audio features and handle inherent speech noises, we propose a dynamic weighted loss approach to train the speech separator. We also collected a real-world noise audio dataset to facilitate investigations. Experiments demonstrate that non-speech audio noises significantly impact ASD models, and our proposed approach improves ASD performance in noisy environments. The framework is general and can be applied to different ASD approaches to improve their robustness. Our code, models, and data will be released.
Abstract:In recent times, the focus on text-to-audio (TTA) generation has intensified, as researchers strive to synthesize audio from textual descriptions. However, most existing methods, though leveraging latent diffusion models to learn the correlation between audio and text embeddings, fall short when it comes to maintaining a seamless synchronization between the produced audio and its video. This often results in discernible audio-visual mismatches. To bridge this gap, we introduce a groundbreaking benchmark for Text-to-Audio generation that aligns with Videos, named T2AV-Bench. This benchmark distinguishes itself with three novel metrics dedicated to evaluating visual alignment and temporal consistency. To complement this, we also present a simple yet effective video-aligned TTA generation model, namely T2AV. Moving beyond traditional methods, T2AV refines the latent diffusion approach by integrating visual-aligned text embeddings as its conditional foundation. It employs a temporal multi-head attention transformer to extract and understand temporal nuances from video data, a feat amplified by our Audio-Visual ControlNet that adeptly merges temporal visual representations with text embeddings. Further enhancing this integration, we weave in a contrastive learning objective, designed to ensure that the visual-aligned text embeddings resonate closely with the audio features. Extensive evaluations on the AudioCaps and T2AV-Bench demonstrate that our T2AV sets a new standard for video-aligned TTA generation in ensuring visual alignment and temporal consistency.
Abstract:The capability of intelligent models to extrapolate and comprehend changes in object states is a crucial yet demanding aspect of AI research, particularly through the lens of human interaction in real-world settings. This task involves describing complex visual environments, identifying active objects, and interpreting their changes as conveyed through language. Traditional methods, which isolate object captioning and state change detection, offer a limited view of dynamic environments. Moreover, relying on a small set of symbolic words to represent changes has restricted the expressiveness of language. To address these challenges, in this paper, we introduce the Object State Captioning and State Change Representation (OSCaR) dataset and benchmark. OSCaR consists of 14,084 annotated video segments with nearly 1,000 unique objects from various egocentric video collections. It sets a new testbed for evaluating multimodal large language models (MLLMs). Our experiments demonstrate that while MLLMs show some skill, they lack a full understanding of object state changes. The benchmark includes a fine-tuned model that, despite initial capabilities, requires significant improvements in accuracy and generalization ability for effective understanding of these changes. Our code and dataset are available at https://github.com/nguyennm1024/OSCaR.
Abstract:Incorporating linguistic knowledge can improve scene text recognition, but it is questionable whether the same holds for scene text spotting, which typically involves text detection and recognition. This paper proposes a method that leverages linguistic knowledge from a large text corpus to replace the traditional one-hot encoding used in auto-regressive scene text spotting and recognition models. This allows the model to capture the relationship between characters in the same word. Additionally, we introduce a technique to generate text distributions that align well with scene text datasets, removing the need for in-domain fine-tuning. As a result, the newly created text distributions are more informative than pure one-hot encoding, leading to improved spotting and recognition performance. Our method is simple and efficient, and it can easily be integrated into existing auto-regressive-based approaches. Experimental results show that our method not only improves recognition accuracy but also enables more accurate localization of words. It significantly improves both state-of-the-art scene text spotting and recognition pipelines, achieving state-of-the-art results on several benchmarks.
Abstract:The generation of emotional talking faces from a single portrait image remains a significant challenge. The simultaneous achievement of expressive emotional talking and accurate lip-sync is particularly difficult, as expressiveness is often compromised for the accuracy of lip-sync. As widely adopted by many prior works, the LSTM network often fails to capture the subtleties and variations of emotional expressions. To address these challenges, we introduce DREAM-Talk, a two-stage diffusion-based audio-driven framework, tailored for generating diverse expressions and accurate lip-sync concurrently. In the first stage, we propose EmoDiff, a novel diffusion module that generates diverse highly dynamic emotional expressions and head poses in accordance with the audio and the referenced emotion style. Given the strong correlation between lip motion and audio, we then refine the dynamics with enhanced lip-sync accuracy using audio features and emotion style. To this end, we deploy a video-to-video rendering module to transfer the expressions and lip motions from our proxy 3D avatar to an arbitrary portrait. Both quantitatively and qualitatively, DREAM-Talk outperforms state-of-the-art methods in terms of expressiveness, lip-sync accuracy and perceptual quality.
Abstract:In this paper, we propose a Disentangled Counterfactual Learning~(DCL) approach for physical audiovisual commonsense reasoning. The task aims to infer objects' physics commonsense based on both video and audio input, with the main challenge is how to imitate the reasoning ability of humans. Most of the current methods fail to take full advantage of different characteristics in multi-modal data, and lacking causal reasoning ability in models impedes the progress of implicit physical knowledge inferring. To address these issues, our proposed DCL method decouples videos into static (time-invariant) and dynamic (time-varying) factors in the latent space by the disentangled sequential encoder, which adopts a variational autoencoder (VAE) to maximize the mutual information with a contrastive loss function. Furthermore, we introduce a counterfactual learning module to augment the model's reasoning ability by modeling physical knowledge relationships among different objects under counterfactual intervention. Our proposed method is a plug-and-play module that can be incorporated into any baseline. In experiments, we show that our proposed method improves baseline methods and achieves state-of-the-art performance. Our source code is available at https://github.com/Andy20178/DCL.
Abstract:Existing machine learning research has achieved promising results in monaural audio-visual separation (MAVS). However, most MAVS methods purely consider what the sound source is, not where it is located. This can be a problem in VR/AR scenarios, where listeners need to be able to distinguish between similar audio sources located in different directions. To address this limitation, we have generalized MAVS to spatial audio separation and proposed LAVSS: a location-guided audio-visual spatial audio separator. LAVSS is inspired by the correlation between spatial audio and visual location. We introduce the phase difference carried by binaural audio as spatial cues, and we utilize positional representations of sounding objects as additional modality guidance. We also leverage multi-level cross-modal attention to perform visual-positional collaboration with audio features. In addition, we adopt a pre-trained monaural separator to transfer knowledge from rich mono sounds to boost spatial audio separation. This exploits the correlation between monaural and binaural channels. Experiments on the FAIR-Play dataset demonstrate the superiority of the proposed LAVSS over existing benchmarks of audio-visual separation. Our project page: https://yyx666660.github.io/LAVSS/.
Abstract:The audio-visual sound separation field assumes visible sources in videos, but this excludes invisible sounds beyond the camera's view. Current methods struggle with such sounds lacking visible cues. This paper introduces a novel "Audio-Visual Scene-Aware Separation" (AVSA-Sep) framework. It includes a semantic parser for visible and invisible sounds and a separator for scene-informed separation. AVSA-Sep successfully separates both sound types, with joint training and cross-modal alignment enhancing effectiveness.