Abstract:Most neural network speech enhancement models ignore speech production mathematical models by directly mapping Fourier transform spectrums or waveforms. In this work, we propose a neural source filter network for speech enhancement. Specifically, we use homomorphic signal processing and cepstral analysis to obtain noisy speech's excitation and vocal tract. Unlike traditional signal processing, we use an attentive recurrent network (ARN) model predicted ratio mask to replace the liftering separation function. Then two convolutional attentive recurrent network (CARN) networks are used to predict the excitation and vocal tract of clean speech, respectively. The system's output is synthesized from the estimated excitation and vocal. Experiments prove that our proposed method performs better, with SI-SNR improving by 1.363dB compared to FullSubNet.
Abstract:Recently, multi-channel speech enhancement has drawn much interest due to the use of spatial information to distinguish target speech from interfering signal. To make full use of spatial information and neural network based masking estimation, we propose a multi-channel denoising neural network -- Spatial DCCRN. Firstly, we extend S-DCCRN to multi-channel scenario, aiming at performing cascaded sub-channel and full-channel processing strategy, which can model different channels separately. Moreover, instead of only adopting multi-channel spectrum or concatenating first-channel's magnitude and IPD as the model's inputs, we apply an angle feature extraction module (AFE) to extract frame-level angle feature embeddings, which can help the model to apparently perceive spatial information. Finally, since the phenomenon of residual noise will be more serious when the noise and speech exist in the same time frequency (TF) bin, we particularly design a masking and mapping filtering method to substitute the traditional filter-and-sum operation, with the purpose of cascading coarsely denoising, dereverberation and residual noise suppression. The proposed model, Spatial-DCCRN, has surpassed EaBNet, FasNet as well as several competitive models on the L3DAS22 Challenge dataset. Not only the 3D scenario, Spatial-DCCRN outperforms state-of-the-art (SOTA) model MIMO-UNet by a large margin in multiple evaluation metrics on the multi-channel ConferencingSpeech2021 Challenge dataset. Ablation studies also demonstrate the effectiveness of different contributions.
Abstract:In this paper, we propose two techniques, namely joint modeling and data augmentation, to improve system performances for audio-visual scene classification (AVSC). We employ pre-trained networks trained only on image data sets to extract video embedding; whereas for audio embedding models, we decide to train them from scratch. We explore different neural network architectures for joint modeling to effectively combine the video and audio modalities. Moreover, data augmentation strategies are investigated to increase audio-visual training set size. For the video modality the effectiveness of several operations in RandAugment is verified. An audio-video joint mixup scheme is proposed to further improve AVSC performances. Evaluated on the development set of TAU Urban Audio Visual Scenes 2021, our final system can achieve the best accuracy of 94.2% among all single AVSC systems submitted to DCASE 2021 Task 1b.
Abstract:In speech enhancement, complex neural network has shown promising performance due to their effectiveness in processing complex-valued spectrum. Most of the recent speech enhancement approaches mainly focus on wide-band signal with a sampling rate of 16K Hz. However, research on super wide band (e.g., 32K Hz) or even full-band (48K) denoising is still lacked due to the difficulty of modeling more frequency bands and particularly high frequency components. In this paper, we extend our previous deep complex convolution recurrent neural network (DCCRN) substantially to a super wide band version -- S-DCCRN, to perform speech denoising on speech of 32K Hz sampling rate. We first employ a cascaded sub-band and full-band processing module, which consists of two small-footprint DCCRNs -- one operates on sub-band signal and one operates on full-band signal, aiming at benefiting from both local and global frequency information. Moreover, instead of simply adopting the STFT feature as input, we use a complex feature encoder trained in an end-to-end manner to refine the information of different frequency bands. We also use a complex feature decoder to revert the feature to time-frequency domain. Finally, a learnable spectrum compression method is adopted to adjust the energy of different frequency bands, which is beneficial for neural network learning. The proposed model, S-DCCRN, has surpassed PercepNet as well as several competitive models and achieves state-of-the-art performance in terms of speech quality and intelligibility. Ablation studies also demonstrate the effectiveness of different contributions.
Abstract:We propose a novel neural model compression strategy combining data augmentation, knowledge transfer, pruning, and quantization for device-robust acoustic scene classification (ASC). Specifically, we tackle the ASC task in a low-resource environment leveraging a recently proposed advanced neural network pruning mechanism, namely Lottery Ticket Hypothesis (LTH), to find a sub-network neural model associated with a small amount non-zero model parameters. The effectiveness of LTH for low-complexity acoustic modeling is assessed by investigating various data augmentation and compression schemes, and we report an efficient joint framework for low-complexity multi-device ASC, called Acoustic Lottery. Acoustic Lottery could compress an ASC model over $1/10^{4}$ and attain a superior performance (validation accuracy of 74.01% and Log loss of 0.76) compared to its not compressed seed model. All results reported in this work are based on a joint effort of four groups, namely GT-USTC-UKE-Tencent, aiming to address the "Low-Complexity Acoustic Scene Classification (ASC) with Multiple Devices" in the DCASE 2021 Challenge Task 1a.
Abstract:Target speech extraction has attracted widespread attention. When microphone arrays are available, the additional spatial information can be helpful in extracting the target speech. We have recently proposed a channel decorrelation (CD) mechanism to extract the inter-channel differential information to enhance the reference channel encoder representation. Although the proposed mechanism has shown promising results for extracting the target speech from mixtures, the extraction performance is still limited by the nature of the original decorrelation theory. In this paper, we propose two methods to broaden the horizon of the original channel decorrelation, by replacing the original softmax-based inter-channel similarity between encoder representations, using an unrolled probability and a normalized cosine-based similarity at the dimensional-level. Moreover, new combination strategies of the CD-based spatial information and target speaker adaptation of parallel encoder outputs are also investigated. Experiments on the reverberant WSJ0 2-mix show that the improved CD can result in more discriminative differential information and the new adaptation strategy is also very effective to improve the target speech extraction.
Abstract:The ConferencingSpeech 2021 challenge is proposed to stimulate research on far-field multi-channel speech enhancement for video conferencing. The challenge consists of two separate tasks: 1) Task 1 is multi-channel speech enhancement with single microphone array and focusing on practical application with real-time requirement and 2) Task 2 is multi-channel speech enhancement with multiple distributed microphone arrays, which is a non-real-time track and does not have any constraints so that participants could explore any algorithms to obtain high speech quality. Targeting the real video conferencing room application, the challenge database was recorded from real speakers and all recording facilities were located by following the real setup of conferencing room. In this challenge, we open-sourced the list of open source clean speech and noise datasets, simulation scripts, and a baseline system for participants to develop their own system. The final ranking of the challenge will be decided by the subjective evaluation which is performed using Absolute Category Ratings (ACR) to estimate Mean Opinion Score (MOS), speech MOS (S-MOS), and noise MOS (N-MOS). This paper describes the challenge, tasks, datasets, and subjective evaluation. The baseline system which is a complex ratio mask based neural network and its experimental results are also presented.
Abstract:To improve device robustness, a highly desirable key feature of a competitive data-driven acoustic scene classification (ASC) system, a novel two-stage system based on fully convolutional neural networks (CNNs) is proposed. Our two-stage system leverages on an ad-hoc score combination based on two CNN classifiers: (i) the first CNN classifies acoustic inputs into one of three broad classes, and (ii) the second CNN classifies the same inputs into one of ten finer-grained classes. Three different CNN architectures are explored to implement the two-stage classifiers, and a frequency sub-sampling scheme is investigated. Moreover, novel data augmentation schemes for ASC are also investigated. Evaluated on DCASE 2020 Task 1a, our results show that the proposed ASC system attains a state-of-the-art accuracy on the development set, where our best system, a two-stage fusion of CNN ensembles, delivers a 81.9% average accuracy among multi-device test data, and it obtains a significant improvement on unseen devices. Finally, neural saliency analysis with class activation mapping (CAM) gives new insights on the patterns learnt by our models.
Abstract:In this technical report, we present a joint effort of four groups, namely GT, USTC, Tencent, and UKE, to tackle Task 1 - Acoustic Scene Classification (ASC) in the DCASE 2020 Challenge. Task 1 comprises two different sub-tasks: (i) Task 1a focuses on ASC of audio signals recorded with multiple (real and simulated) devices into ten different fine-grained classes, and (ii) Task 1b concerns with classification of data into three higher-level classes using low-complexity solutions. For Task 1a, we propose a novel two-stage ASC system leveraging upon ad-hoc score combination of two convolutional neural networks (CNNs), classifying the acoustic input according to three classes, and then ten classes, respectively. Four different CNN-based architectures are explored to implement the two-stage classifiers, and several data augmentation techniques are also investigated. For Task 1b, we leverage upon a quantization method to reduce the complexity of two of our top-accuracy three-classes CNN-based architectures. On Task 1a development data set, an ASC accuracy of 76.9\% is attained using our best single classifier and data augmentation. An accuracy of 81.9\% is then attained by a final model fusion of our two-stage ASC classifiers. On Task 1b development data set, we achieve an accuracy of 96.7\% with a model size smaller than 500KB. Code is available: https://github.com/MihawkHu/DCASE2020_task1.
Abstract:This paper investigates different trade-offs between the number of model parameters and enhanced speech qualities by employing several deep tensor-to-vector regression models for speech enhancement. We find that a hybrid architecture, namely CNN-TT, is capable of maintaining a good quality performance with a reduced model parameter size. CNN-TT is composed of several convolutional layers at the bottom for feature extraction to improve speech quality and a tensor-train (TT) output layer on the top to reduce model parameters. We first derive a new upper bound on the generalization power of the convolutional neural network (CNN) based vector-to-vector regression models. Then, we provide experimental evidence on the Edinburgh noisy speech corpus to demonstrate that, in single-channel speech enhancement, CNN outperforms DNN at the expense of a small increment of model sizes. Besides, CNN-TT slightly outperforms the CNN counterpart by utilizing only 32\% of the CNN model parameters. Besides, further performance improvement can be attained if the number of CNN-TT parameters is increased to 44\% of the CNN model size. Finally, our experiments of multi-channel speech enhancement on a simulated noisy WSJ0 corpus demonstrate that our proposed hybrid CNN-TT architecture achieves better results than both DNN and CNN models in terms of better-enhanced speech qualities and smaller parameter sizes.