Linda
Abstract:Considering the hardware-friendly characteristics and broad applicability, structured pruning has emerged as an efficient solution to reduce the resource demands of large language models (LLMs) on resource-constrained devices. Traditional structured pruning methods often need fine-tuning to recover performance loss, which incurs high memory overhead and substantial data requirements, rendering them unsuitable for on-device applications. Additionally, post-training structured pruning techniques typically necessitate specific activation functions or architectural modifications, thereby limiting their scope of applications. Herein, we introduce COMP, a lightweight post-training structured pruning method that employs a hybrid-granularity pruning strategy. COMP initially prunes selected model layers based on their importance at a coarse granularity, followed by fine-grained neuron pruning within the dense layers of each remaining model layer. To more accurately evaluate neuron importance, COMP introduces a new matrix condition-based metric. Subsequently, COMP utilizes mask tuning to recover accuracy without the need for fine-tuning, significantly reducing memory consumption. Experimental results demonstrate that COMP improves performance by 6.13\% on the LLaMA-2-7B model with a 20\% pruning ratio compared to LLM-Pruner, while simultaneously reducing memory overhead by 80\%.
Abstract:Detecting fabric defects in the textile industry remains a challenging task due to the diverse and complex nature of defect patterns. Traditional methods often suffer from slow inference speeds, limited accuracy, and inadequate recognition rates, particularly in scenarios involving intricate or subtle defects. To overcome these limitations, we introduce Fab-ASLKS, an advanced fabric defect detection framework built upon the YOLOv8s architecture. Fab-ASLKS incorporates two key modules: (1) the Adaptive Shape Convolution Module (ASCM), which leverages adaptive shape convolution within the Neck to enhance feature fusion and improve efficiency by extending the capabilities of the standard C2f structure, and (2) the Large Kernel Shift Convolution Module (LKSCM), designed to emulate large kernel effects within the Backbone, enabling superior spatial information extraction. These modules collaboratively optimize feature extraction and information integration across the network. Extensive experiments conducted on the Tianchi fabric defect detection dataset demonstrate that Fab-ASLKS achieves a 5% improvement in mAP@50 over the baseline, showcasing its capability to deliver high precision and efficiency.
Abstract:Deploying Large Language Models (LLMs) on resource-constrained (or weak) devices presents significant challenges due to limited resources and heterogeneous data distribution. To address the data concern, it is necessary to fine-tune LLMs using on-device private data for various downstream tasks. While Federated Learning (FL) offers a promising privacy-preserving solution, existing fine-tuning methods retain the original LLM size, leaving issues of high inference latency and excessive memory demands unresolved. Hence, we design FedSpine, an FL framework that combines Parameter- Efficient Fine-Tuning (PEFT) with structured pruning for efficient deployment of LLMs on resource-constrained devices. Specifically, FedSpine introduces an iterative process to prune and tune the parameters of LLMs. To mitigate the impact of device heterogeneity, an online Multi-Armed Bandit (MAB) algorithm is employed to adaptively determine different pruning ratios and LoRA ranks for heterogeneous devices without any prior knowledge of their computing and communication capabilities. As a result, FedSpine maintains higher inference accuracy while improving fine-tuning efficiency. Experimental results conducted on a physical platform with 80 devices demonstrate that FedSpine can speed up fine-tuning by 1.4$\times$-6.9$\times$ and improve final accuracy by 0.4%-4.5% under the same sparsity level compared to other baselines.
Abstract:Federated fine-tuning (FedFT) has been proposed to fine-tune the pre-trained language models in a distributed manner. However, there are two critical challenges for efficient FedFT in practical applications, i.e., resource constraints and system heterogeneity. Existing works rely on parameter-efficient fine-tuning methods, e.g., low-rank adaptation (LoRA), but with major limitations. Herein, based on the inherent characteristics of FedFT, we observe that LoRA layers with higher ranks added close to the output help to save resource consumption while achieving comparable fine-tuning performance. Then we propose a novel LoRA-based FedFT framework, termed LEGEND, which faces the difficulty of determining the number of LoRA layers (called, LoRA depth) and the rank of each LoRA layer (called, rank distribution). We analyze the coupled relationship between LoRA depth and rank distribution, and design an efficient LoRA configuration algorithm for heterogeneous devices, thereby promoting fine-tuning efficiency. Extensive experiments are conducted on a physical platform with 80 commercial devices. The results show that LEGEND can achieve a speedup of 1.5-2.8$\times$ and save communication costs by about 42.3% when achieving the target accuracy, compared to the advanced solutions.
Abstract:Understanding training dynamics and feature evolution is crucial for the mechanistic interpretability of large language models (LLMs). Although sparse autoencoders (SAEs) have been used to identify features within LLMs, a clear picture of how these features evolve during training remains elusive. In this study, we: (1) introduce SAE-Track, a method to efficiently obtain a continual series of SAEs; (2) formulate the process of feature formation and conduct a mechanistic analysis; and (3) analyze and visualize feature drift during training. Our work provides new insights into the dynamics of features in LLMs, enhancing our understanding of training mechanisms and feature evolution.
Abstract:The Myers-Briggs Type Indicator (MBTI) is one of the most influential personality theories reflecting individual differences in thinking, feeling, and behaving. MBTI personality detection has garnered considerable research interest and has evolved significantly over the years. However, this task tends to be overly optimistic, as it currently does not align well with the natural distribution of population personality traits. Specifically, (1) the self-reported labels in existing datasets result in incorrect labeling issues, and (2) the hard labels fail to capture the full range of population personality distributions. In this paper, we optimize the task by constructing MBTIBench, the first manually annotated high-quality MBTI personality detection dataset with soft labels, under the guidance of psychologists. As for the first challenge, MBTIBench effectively solves the incorrect labeling issues, which account for 29.58% of the data. As for the second challenge, we estimate soft labels by deriving the polarity tendency of samples. The obtained soft labels confirm that there are more people with non-extreme personality traits. Experimental results not only highlight the polarized predictions and biases in LLMs as key directions for future research, but also confirm that soft labels can provide more benefits to other psychological tasks than hard labels. The code and data are available at https://github.com/Personality-NLP/MbtiBench.
Abstract:Implicit neural representations and 3D Gaussian splatting (3DGS) have shown great potential for scene reconstruction. Recent studies have expanded their applications in autonomous reconstruction through task assignment methods. However, these methods are mainly limited to single robot, and rapid reconstruction of large-scale scenes remains challenging. Additionally, task-driven planning based on surface uncertainty is prone to being trapped in local optima. To this end, we propose the first 3DGS-based centralized multi-robot autonomous 3D reconstruction framework. To further reduce time cost of task generation and improve reconstruction quality, we integrate online open-vocabulary semantic segmentation with surface uncertainty of 3DGS, focusing view sampling on regions with high instance uncertainty. Finally, we develop a multi-robot collaboration strategy with mode and task assignments improving reconstruction quality while ensuring planning efficiency. Our method demonstrates the highest reconstruction quality among all planning methods and superior planning efficiency compared to existing multi-robot methods. We deploy our method on multiple robots, and results show that it can effectively plan view paths and reconstruct scenes with high quality.
Abstract:Transformer-based diffusion models, dubbed Diffusion Transformers (DiTs), have achieved state-of-the-art performance in image and video generation tasks. However, their large model size and slow inference speed limit their practical applications, calling for model compression methods such as quantization. Unfortunately, existing DiT quantization methods overlook (1) the impact of reconstruction and (2) the varying quantization sensitivities across different layers, which hinder their achievable performance. To tackle these issues, we propose innovative time-aware quantization for DiTs (TaQ-DiT). Specifically, (1) we observe a non-convergence issue when reconstructing weights and activations separately during quantization and introduce a joint reconstruction method to resolve this problem. (2) We discover that Post-GELU activations are particularly sensitive to quantization due to their significant variability across different denoising steps as well as extreme asymmetries and variations within each step. To address this, we propose time-variance-aware transformations to facilitate more effective quantization. Experimental results show that when quantizing DiTs' weights to 4-bit and activations to 8-bit (W4A8), our method significantly surpasses previous quantization methods.
Abstract:A key function of the lexicon is to express novel concepts as they emerge over time through a process known as lexicalization. The most common lexicalization strategies are the reuse and combination of existing words, but they have typically been studied separately in the areas of word meaning extension and word formation. Here we offer an information-theoretic account of how both strategies are constrained by a fundamental tradeoff between competing communicative pressures: word reuse tends to preserve the average length of word forms at the cost of less precision, while word combination tends to produce more informative words at the expense of greater word length. We test our proposal against a large dataset of reuse items and compounds that appeared in English, French and Finnish over the past century. We find that these historically emerging items achieve higher levels of communicative efficiency than hypothetical ways of constructing the lexicon, and both literal reuse items and compounds tend to be more efficient than their non-literal counterparts. These results suggest that reuse and combination are both consistent with a unified account of lexicalization grounded in the theory of efficient communication.
Abstract:Deep reinforcement learning (DRL) has been extensively applied to Multi-Unmanned Aerial Vehicle (UAV) network (MUN) to effectively enable real-time adaptation to complex, time-varying environments. Nevertheless, most of the existing works assume a stationary user distribution (UD) or a dynamic one with predicted patterns. Such considerations may make the UD-specific strategies insufficient when a MUN is deployed in unknown environments. To this end, this paper investigates distributed user connectivity maximization problem in a MUN with generalization to arbitrary UDs. Specifically, the problem is first formulated into a time-coupled combinatorial nonlinear non-convex optimization with arbitrary underlying UDs. To make the optimization tractable, a multi-agent CNN-enhanced deep Q learning (MA-CDQL) algorithm is proposed. The algorithm integrates a ResNet-based CNN to the policy network to analyze the input UD in real time and obtain optimal decisions based on the extracted high-level UD features. To improve the learning efficiency and avoid local optimums, a heatmap algorithm is developed to transform the raw UD to a continuous density map. The map will be part of the true input to the policy network. Simulations are conducted to demonstrate the efficacy of UD heatmaps and the proposed algorithm in maximizing user connectivity as compared to K-means methods.