Cooperative Medianet Innovation Center, Shanghai Jiao Tong University, China and Shanghai AI Laboratory, China
Abstract:With the proliferation of Large Language Models (LLMs) in diverse domains, there is a particular need for unified evaluation standards in clinical medical scenarios, where models need to be examined very thoroughly. We present CliMedBench, a comprehensive benchmark with 14 expert-guided core clinical scenarios specifically designed to assess the medical ability of LLMs across 7 pivot dimensions. It comprises 33,735 questions derived from real-world medical reports of top-tier tertiary hospitals and authentic examination exercises. The reliability of this benchmark has been confirmed in several ways. Subsequent experiments with existing LLMs have led to the following findings: (i) Chinese medical LLMs underperform on this benchmark, especially where medical reasoning and factual consistency are vital, underscoring the need for advances in clinical knowledge and diagnostic accuracy. (ii) Several general-domain LLMs demonstrate substantial potential in medical clinics, while the limited input capacity of many medical LLMs hinders their practical use. These findings reveal both the strengths and limitations of LLMs in clinical scenarios and offer critical insights for medical research.
Abstract:The widespread adoption of large-scale pre-training techniques has significantly advanced the development of medical foundation models, enabling them to serve as versatile tools across a broad range of medical tasks. However, despite their strong generalization capabilities, medical foundation models pre-trained on large-scale datasets tend to suffer from domain gaps between heterogeneous data, leading to suboptimal performance on specific tasks compared to specialist models, as evidenced by previous studies. In this paper, we explore a new perspective called "Knowledge Decomposition" to improve the performance on specific medical tasks, which deconstructs the foundation model into multiple lightweight expert models, each dedicated to a particular anatomical region, with the aim of enhancing specialization and simultaneously reducing resource consumption. To accomplish the above objective, we propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD), which explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution. The low-rank expert modules resolve gradient conflicts between heterogeneous data from different anatomical regions, providing strong specialization at lower costs. The efficient knowledge separation convolution significantly improves algorithm efficiency by achieving knowledge separation within a single forward propagation. Extensive experimental results on segmentation and classification tasks demonstrate that our decomposed models not only achieve state-of-the-art performance but also exhibit superior transferability on downstream tasks, even surpassing the original foundation models in task-specific evaluations. The code is available at here.
Abstract:Over the past decade, significant progress has been made in visual object tracking, largely due to the availability of large-scale training datasets. However, existing tracking datasets are primarily focused on open-air scenarios, which greatly limits the development of object tracking in underwater environments. To address this issue, we take a step forward by proposing the first large-scale underwater camouflaged object tracking dataset, namely UW-COT. Based on the proposed dataset, this paper presents an experimental evaluation of several advanced visual object tracking methods and the latest advancements in image and video segmentation. Specifically, we compare the performance of the Segment Anything Model (SAM) and its updated version, SAM 2, in challenging underwater environments. Our findings highlight the improvements in SAM 2 over SAM, demonstrating its enhanced capability to handle the complexities of underwater camouflaged objects. Compared to current advanced visual object tracking methods, the latest video segmentation foundation model SAM 2 also exhibits significant advantages, providing valuable insights into the development of more effective tracking technologies for underwater scenarios. The dataset will be accessible at \color{magenta}{https://github.com/983632847/Awesome-Multimodal-Object-Tracking}.
Abstract:Federated instruction tuning enables multiple clients to collaboratively fine-tune a shared large language model (LLM) that can follow humans' instructions without directly sharing raw data. However, existing literature impractically requires that all the clients readily hold instruction-tuning data (i.e., structured instruction-response pairs), which necessitates massive human annotations since clients' data is usually unstructured text instead. Addressing this, we propose a novel and flexible framework FedIT-U2S, which can automatically transform unstructured corpus into structured data for federated instruction tuning. FedIT-U2S consists two key steps: (1) few-shot instruction-tuning data generation, where each unstructured data piece together with several examples is combined to prompt an LLM in generating an instruction-response pair. To further enhance the flexibility, a retrieval-based example selection technique is proposed, where the examples are automatically selected based on the relatedness between the client's data piece and example pool, bypassing the need of determining examples in advance. (2) A typical federated instruction tuning process based on the generated data. Overall, FedIT-U2S can be applied to diverse scenarios as long as the client holds valuable text corpus, broadening the application scope of federated instruction tuning. We conduct a series of experiments on three domains (medicine, knowledge, and math), showing that our proposed FedIT-U2S can consistently and significantly brings improvement over the base LLM.
Abstract:Current computer-aided ECG diagnostic systems struggle with the underdetection of rare but critical cardiac anomalies due to the imbalanced nature of ECG datasets. This study introduces a novel approach using self-supervised anomaly detection pretraining to address this limitation. The anomaly detection model is specifically designed to detect and localize subtle deviations from normal cardiac patterns, capturing the nuanced details essential for accurate ECG interpretation. Validated on an extensive dataset of over one million ECG records from clinical practice, characterized by a long-tail distribution across 116 distinct categories, the anomaly detection-pretrained ECG diagnostic model has demonstrated a significant improvement in overall accuracy. Notably, our approach yielded a 94.7% AUROC, 92.2% sensitivity, and 92.5\% specificity for rare ECG types, significantly outperforming traditional methods and narrowing the performance gap with common ECG types. The integration of anomaly detection pretraining into ECG analysis represents a substantial contribution to the field, addressing the long-standing challenge of long-tail data distributions in clinical diagnostics. Furthermore, prospective validation in real-world clinical settings revealed that our AI-driven approach enhances diagnostic efficiency, precision, and completeness by 32%, 6.7%, and 11.8% respectively, when compared to standard practices. This advancement marks a pivotal step forward in the integration of AI within clinical cardiology, with particularly profound implications for emergency care, where rapid and accurate ECG interpretation is crucial. The contributions of this study not only push the boundaries of current ECG diagnostic capabilities but also lay the groundwork for more reliable and accessible cardiovascular care.
Abstract:In this study, we present MedS-Bench, a comprehensive benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts. Unlike existing benchmarks that focus on multiple-choice question answering, MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation, among others. We evaluated six leading LLMs, e.g., MEDITRON, Mistral, InternLM 2, Llama 3, GPT-4, and Claude-3.5 using few-shot prompting, and found that even the most sophisticated models struggle with these complex tasks. To address these limitations, we developed MedS-Ins, a large-scale instruction tuning dataset for medicine. MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks. To demonstrate the dataset's utility, we conducted a proof-of-concept experiment by performing instruction tuning on a lightweight, open-source medical language model. The resulting model, MMedIns-Llama 3, significantly outperformed existing models across nearly all clinical tasks. To promote further advancements in the application of LLMs to clinical challenges, we have made the MedS-Ins dataset fully accessible and invite the research community to contribute to its expansion.Additionally, we have launched a dynamic leaderboard for MedS-Bench, which we plan to regularly update the test set to track progress and enhance the adaptation of general LLMs to the medical domain. Leaderboard: https://henrychur.github.io/MedS-Bench/. Github: https://github.com/MAGIC-AI4Med/MedS-Ins.
Abstract:Diffusion models have emerged as frontrunners in text-to-image generation for their impressive capabilities. Nonetheless, their fixed image resolution during training often leads to challenges in high-resolution image generation, such as semantic inaccuracies and object replication. This paper introduces MegaFusion, a novel approach that extends existing diffusion-based text-to-image generation models towards efficient higher-resolution generation without additional fine-tuning or extra adaptation. Specifically, we employ an innovative truncate and relay strategy to bridge the denoising processes across different resolutions, allowing for high-resolution image generation in a coarse-to-fine manner. Moreover, by integrating dilated convolutions and noise re-scheduling, we further adapt the model's priors for higher resolution. The versatility and efficacy of MegaFusion make it universally applicable to both latent-space and pixel-space diffusion models, along with other derivative models. Extensive experiments confirm that MegaFusion significantly boosts the capability of existing models to produce images of megapixels and various aspect ratios, while only requiring about 40% of the original computational cost.
Abstract:The application of the Multi-modal Large Language Models (MLLMs) in medical clinical scenarios remains underexplored. Previous benchmarks only focus on the capacity of the MLLMs in medical visual question-answering (VQA) or report generation and fail to assess the performance of the MLLMs on complex clinical multi-modal tasks. In this paper, we propose a novel Medical Personalized Multi-modal Consultation (Med-PMC) paradigm to evaluate the clinical capacity of the MLLMs. Med-PMC builds a simulated clinical environment where the MLLMs are required to interact with a patient simulator to complete the multi-modal information-gathering and decision-making task. Specifically, the patient simulator is decorated with personalized actors to simulate diverse patients in real scenarios. We conduct extensive experiments to access 12 types of MLLMs, providing a comprehensive view of the MLLMs' clinical performance. We found that current MLLMs fail to gather multimodal information and show potential bias in the decision-making task when consulted with the personalized patient simulators. Further analysis demonstrates the effectiveness of Med-PMC, showing the potential to guide the development of robust and reliable clinical MLLMs. Code and data are available at https://github.com/LiuHC0428/Med-PMC.
Abstract:Heart sound auscultation holds significant importance in the diagnosis of congenital heart disease. However, existing methods for Heart Sound Diagnosis (HSD) tasks are predominantly limited to a few fixed categories, framing the HSD task as a rigid classification problem that does not fully align with medical practice and offers only limited information to physicians. Besides, such methods do not utilize echocardiography reports, the gold standard in the diagnosis of related diseases. To tackle this challenge, we introduce HSDreport, a new benchmark for HSD, which mandates the direct utilization of heart sounds obtained from auscultation to predict echocardiography reports. This benchmark aims to merge the convenience of auscultation with the comprehensive nature of echocardiography reports. First, we collect a new dataset for this benchmark, comprising 2,275 heart sound samples along with their corresponding reports. Subsequently, we develop a knowledge-aware query-based transformer to handle this task. The intent is to leverage the capabilities of medically pre-trained models and the internal knowledge of large language models (LLMs) to address the task's inherent complexity and variability, thereby enhancing the robustness and scientific validity of the method. Furthermore, our experimental results indicate that our method significantly outperforms traditional HSD approaches and existing multimodal LLMs in detecting key abnormalities in heart sounds.
Abstract:Language, as an information medium created by advanced organisms, has always been a concern of neuroscience regarding how it is represented in the brain. Decoding linguistic representations in the evoked brain has shown groundbreaking achievements, thanks to the rapid improvement of neuroimaging, medical technology, life sciences and artificial intelligence. In this work, we present a taxonomy of brain-to-language decoding of both textual and speech formats. This work integrates two types of research: neuroscience focusing on language understanding and deep learning-based brain decoding. Generating discernible language information from brain activity could not only help those with limited articulation, especially amyotrophic lateral sclerosis (ALS) patients but also open up a new way for the next generation's brain-computer interface (BCI). This article will help brain scientists and deep-learning researchers to gain a bird's eye view of fine-grained language perception, and thus facilitate their further investigation and research of neural process and language decoding.