Abstract:Prompt learning has become a prevalent strategy for adapting vision-language foundation models to downstream tasks. As large language models (LLMs) have emerged, recent studies have explored the use of category-related descriptions as input to enhance prompt effectiveness. Nevertheless, conventional descriptions fall short of structured information that effectively represents the interconnections among entities or attributes linked to a particular category. To address this limitation and prioritize harnessing structured knowledge, this paper advocates for leveraging LLMs to build a graph for each description to model the entities and attributes describing the category, as well as their correlations. Preexisting prompt tuning methods exhibit inadequacies in managing this structured knowledge. Consequently, we propose a novel approach called Hierarchical Prompt Tuning (HPT), which enables simultaneous modeling of both structured and conventional linguistic knowledge. Specifically, we introduce a relationship-guided attention module to capture pair-wise associations among entities and attributes for low-level prompt learning. In addition, by incorporating high-level and global-level prompts modeling overall semantics, the proposed hierarchical structure forges cross-level interlinks and empowers the model to handle more complex and long-term relationships. Extensive experiments demonstrate that our HPT shows strong effectiveness and generalizes much better than existing SOTA methods. Our code is available at https://github.com/Vill-Lab/2024-AAAI-HPT.
Abstract:Vision-Language Pre-training (VLP) has shown the merits of analysing medical images, by leveraging the semantic congruence between medical images and their corresponding reports. It efficiently learns visual representations, which in turn facilitates enhanced analysis and interpretation of intricate imaging data. However, such observation is predominantly justified on single-modality data (mostly 2D images like X-rays), adapting VLP to learning unified representations for medical images in real scenario remains an open challenge. This arises from medical images often encompass a variety of modalities, especially modalities with different various number of dimensions (e.g., 3D images like Computed Tomography). To overcome the aforementioned challenges, we propose an Unified Medical Image Pre-training framework, namely UniMedI, which utilizes diagnostic reports as common semantic space to create unified representations for diverse modalities of medical images (especially for 2D and 3D images). Under the text's guidance, we effectively uncover visual modality information, identifying the affected areas in 2D X-rays and slices containing lesion in sophisticated 3D CT scans, ultimately enhancing the consistency across various medical imaging modalities. To demonstrate the effectiveness and versatility of UniMedI, we evaluate its performance on both 2D and 3D images across 10 different datasets, covering a wide range of medical image tasks such as classification, segmentation, and retrieval. UniMedI has demonstrated superior performance in downstream tasks, showcasing its effectiveness in establishing a universal medical visual representation.
Abstract:Low latency rates are crucial for online video-based applications, such as video conferencing and cloud gaming, which make improving video quality in online scenarios increasingly important. However, existing quality enhancement methods are limited by slow inference speed and the requirement for temporal information contained in future frames, making it challenging to deploy them directly in online tasks. In this paper, we propose a novel method, STLVQE, specifically designed to address the rarely studied online video quality enhancement (Online-VQE) problem. Our STLVQE designs a new VQE framework which contains a Module-Agnostic Feature Extractor that greatly reduces the redundant computations and redesign the propagation, alignment, and enhancement module of the network. A Spatial-Temporal Look-up Tables (STL) is proposed, which extracts spatial-temporal information in videos while saving substantial inference time. To the best of our knowledge, we are the first to exploit the LUT structure to extract temporal information in video tasks. Extensive experiments on the MFQE 2.0 dataset demonstrate that our STLVQE achieves a satisfactory performance-speed trade-off.
Abstract:Recent deep learning-based optical flow estimators have exhibited impressive performance in generating local flows between consecutive frames. However, the estimation of long-range flows between distant frames, particularly under complex object deformation and large motion occlusion, remains a challenging task. One promising solution is to accumulate local flows explicitly or implicitly to obtain the desired long-range flow. Nevertheless, the accumulation errors and flow misalignment can hinder the effectiveness of this approach. This paper proposes a novel recurrent framework called AccFlow, which recursively backward accumulates local flows using a deformable module called as AccPlus. In addition, an adaptive blending module is designed along with AccPlus to alleviate the occlusion effect by backward accumulation and rectify the accumulation error. Notably, we demonstrate the superiority of backward accumulation over conventional forward accumulation, which to the best of our knowledge has not been explicitly established before. To train and evaluate the proposed AccFlow, we have constructed a large-scale high-quality dataset named CVO, which provides ground-truth optical flow labels between adjacent and distant frames. Extensive experiments validate the effectiveness of AccFlow in handling long-range optical flow estimation. Codes are available at https://github.com/mulns/AccFlow .
Abstract:Diffusion-based Generative Models (DGMs) have achieved unparalleled performance in synthesizing high-quality visual content, opening up the opportunity to improve image super-resolution (SR) tasks. Recent solutions for these tasks often train architecture-specific DGMs from scratch, or require iterative fine-tuning and distillation on pre-trained DGMs, both of which take considerable time and hardware investments. More seriously, since the DGMs are established with a discrete pre-defined upsampling scale, they cannot well match the emerging requirements of arbitrary-scale super-resolution (ASSR), where a unified model adapts to arbitrary upsampling scales, instead of preparing a series of distinct models for each case. These limitations beg an intriguing question: can we identify the ASSR capability of existing pre-trained DGMs without the need for distillation or fine-tuning? In this paper, we take a step towards resolving this matter by proposing Diff-SR, a first ASSR attempt based solely on pre-trained DGMs, without additional training efforts. It is motivated by an exciting finding that a simple methodology, which first injects a specific amount of noise into the low-resolution images before invoking a DGM's backward diffusion process, outperforms current leading solutions. The key insight is determining a suitable amount of noise to inject, i.e., small amounts lead to poor low-level fidelity, while over-large amounts degrade the high-level signature. Through a finely-grained theoretical analysis, we propose the Perceptual Recoverable Field (PRF), a metric that achieves the optimal trade-off between these two factors. Extensive experiments verify the effectiveness, flexibility, and adaptability of Diff-SR, demonstrating superior performance to state-of-the-art solutions under diverse ASSR environments.
Abstract:This paper focuses on Super-resolution for online video streaming data. Applying existing super-resolution methods to video streaming data is non-trivial for two reasons. First, to support application with constant interactions, video streaming has a high requirement for latency that most existing methods are less applicable, especially on low-end devices. Second, existing video streaming protocols (e.g., WebRTC) dynamically adapt the video quality to the network condition, thus video streaming in the wild varies greatly under different network bandwidths, which leads to diverse and dynamic degradations. To tackle the above two challenges, we proposed a novel video super-resolution method for online video streaming. First, we incorporate Look-Up Table (LUT) to lightweight convolution modules to achieve real-time latency. Second, for variant degradations, we propose a pixel-level LUT fusion strategy, where a set of LUT bases are built upon state-of-the-art SR networks pre-trained on different degraded data, and those LUT bases are combined with extracted weights from lightweight convolution modules to adaptively handle dynamic degradations. Extensive experiments are conducted on a newly proposed online video streaming dataset named LDV-WebRTC. All the results show that our method significantly outperforms existing LUT-based methods and offers competitive SR performance with faster speed compared to efficient CNN-based methods. Accelerated with our parallel LUT inference, our proposed method can even support online 720P video SR around 100 FPS.
Abstract:Monitoring and analyzing stereotypical behaviours is important for early intervention and care taking in Autism Spectrum Disorder (ASD). This paper focuses on automatically detecting stereotypical behaviours with computer vision techniques. Off-the-shelf methods tackle this task by supervised classification and activity recognition techniques. However, the unbounded types of stereotypical behaviours and the difficulty in collecting video recordings of ASD patients largely limit the feasibility of the existing supervised detection methods. As a result, we tackle these challenges from a new perspective, i.e. unsupervised video anomaly detection for stereotypical behaviours detection. The models can be trained among unlabeled videos containing only normal behaviours and unknown types of abnormal behaviours can be detected during inference. Correspondingly, we propose a Dual Stream deep model for Stereotypical Behaviours Detection, DS-SBD, based on the temporal trajectory of human poses and the repetition patterns of human actions. Extensive experiments are conducted to verify the effectiveness of our proposed method and suggest that it serves as a potential benchmark for future research.
Abstract:Ensemble methods can deliver surprising performance gains but also bring significantly higher computational costs, e.g., can be up to 2048X in large-scale ensemble tasks. However, we found that the majority of computations in ensemble methods are redundant. For instance, over 77% of samples in CIFAR-100 dataset can be correctly classified with only a single ResNet-18 model, which indicates that only around 23% of the samples need an ensemble of extra models. To this end, we propose an inference efficient ensemble learning method, to simultaneously optimize for effectiveness and efficiency in ensemble learning. More specifically, we regard ensemble of models as a sequential inference process and learn the optimal halting event for inference on a specific sample. At each timestep of the inference process, a common selector judges if the current ensemble has reached ensemble effectiveness and halt further inference, otherwise filters this challenging sample for the subsequent models to conduct more powerful ensemble. Both the base models and common selector are jointly optimized to dynamically adjust ensemble inference for different samples with various hardness, through the novel optimization goals including sequential ensemble boosting and computation saving. The experiments with different backbones on real-world datasets illustrate our method can bring up to 56\% inference cost reduction while maintaining comparable performance to full ensemble, achieving significantly better ensemble utility than other baselines. Code and supplemental materials are available at https://seqml.github.io/irene.
Abstract:Image token removal is an efficient augmentation strategy for reducing the cost of computing image features. However, this efficient augmentation strategy has been found to adversely affect the accuracy of CLIP-based training. We hypothesize that removing a large portion of image tokens may improperly discard the semantic content associated with a given text description, thus constituting an incorrect pairing target in CLIP training. To address this issue, we propose an attentive token removal approach for CLIP training, which retains tokens with a high semantic correlation to the text description. The correlation scores are computed in an online fashion using the EMA version of the visual encoder. Our experiments show that the proposed attentive masking approach performs better than the previous method of random token removal for CLIP training. The approach also makes it efficient to apply multiple augmentation views to the image, as well as introducing instance contrastive learning tasks between these views into the CLIP framework. Compared to other CLIP improvements that combine different pre-training targets such as SLIP and MaskCLIP, our method is not only more effective, but also much more efficient. Specifically, using ViT-B and YFCC-15M dataset, our approach achieves $43.9\%$ top-1 accuracy on ImageNet-1K zero-shot classification, as well as $62.7/42.1$ and $38.0/23.2$ I2T/T2I retrieval accuracy on Flickr30K and MS COCO, which are $+1.1\%$, $+5.5/+0.9$, and $+4.4/+1.3$ higher than the SLIP method, while being $2.30\times$ faster. An efficient version of our approach running $1.16\times$ faster than the plain CLIP model achieves significant gains of $+5.3\%$, $+11.3/+8.0$, and $+9.5/+4.9$ on these benchmarks.
Abstract:Prompt learning is one of the most effective and trending ways to adapt powerful vision-language foundation models like CLIP to downstream datasets by tuning learnable prompt vectors with very few samples. However, although prompt learning achieves excellent performance over in-domain data, it still faces the major challenge of generalizing to unseen classes and domains. Some existing prompt learning methods tackle this issue by adaptively generating different prompts for different tokens or domains but neglecting the ability of learned prompts to generalize to unseen domains. In this paper, we propose a novel prompt learning paradigm that directly generates domain invariant prompt generalizable to unseen domains, called MetaPrompt. Specifically, a dual-modality prompt tuning network is proposed to generate prompts for inputs from both image and text modalities. More importantly, we propose a meta-learning-based prompt tuning algorithm that explicitly constrains the prompt tuned on a specific domain or class also to achieve good performance on another domain or class. Extensive experiments on 11 datasets for base-to-new generalization and four datasets for domain generalization demonstrate that our method consistently and significantly outperforms existing methods.