Abstract:Atrous convolutions are employed as a method to increase the receptive field in semantic segmentation tasks. However, in previous works of semantic segmentation, it was rarely employed in the shallow layers of the model. We revisit the design of atrous convolutions in modern convolutional neural networks (CNNs), and demonstrate that the concept of using large kernels to apply atrous convolutions could be a more powerful paradigm. We propose three guidelines to apply atrous convolutions more efficiently. Following these guidelines, we propose DSNet, a Dual-Branch CNN architecture, which incorporates atrous convolutions in the shallow layers of the model architecture, as well as pretraining the nearly entire encoder on ImageNet to achieve better performance. To demonstrate the effectiveness of our approach, our models achieve a new state-of-the-art trade-off between accuracy and speed on ADE20K, Cityscapes and BDD datasets. Specifically, DSNet achieves 40.0% mIOU with inference speed of 179.2 FPS on ADE20K, and 80.4% mIOU with speed of 81.9 FPS on Cityscapes. Source code and models are available at Github: https://github.com/takaniwa/DSNet.
Abstract:Recently,smart roadside infrastructure (SRI) has demonstrated the potential of achieving fully autonomous driving systems. To explore the potential of infrastructure-assisted autonomous driving, this paper presents the design and deployment of Soar, the first end-to-end SRI system specifically designed to support autonomous driving systems. Soar consists of both software and hardware components carefully designed to overcome various system and physical challenges. Soar can leverage the existing operational infrastructure like street lampposts for a lower barrier of adoption. Soar adopts a new communication architecture that comprises a bi-directional multi-hop I2I network and a downlink I2V broadcast service, which are designed based on off-the-shelf 802.11ac interfaces in an integrated manner. Soar also features a hierarchical DL task management framework to achieve desirable load balancing among nodes and enable them to collaborate efficiently to run multiple data-intensive autonomous driving applications. We deployed a total of 18 Soar nodes on existing lampposts on campus, which have been operational for over two years. Our real-world evaluation shows that Soar can support a diverse set of autonomous driving applications and achieve desirable real-time performance and high communication reliability. Our findings and experiences in this work offer key insights into the development and deployment of next-generation smart roadside infrastructure and autonomous driving systems.
Abstract:Neural radiance fields (NeRFs) are promising 3D representations for scenes, objects, and humans. However, most existing methods require multi-view inputs and per-scene training, which limits their real-life applications. Moreover, current methods focus on single-subject cases, leaving scenes of interacting hands that involve severe inter-hand occlusions and challenging view variations remain unsolved. To tackle these issues, this paper proposes a generalizable visibility-aware NeRF (VA-NeRF) framework for interacting hands. Specifically, given an image of interacting hands as input, our VA-NeRF first obtains a mesh-based representation of hands and extracts their corresponding geometric and textural features. Subsequently, a feature fusion module that exploits the visibility of query points and mesh vertices is introduced to adaptively merge features of both hands, enabling the recovery of features in unseen areas. Additionally, our VA-NeRF is optimized together with a novel discriminator within an adversarial learning paradigm. In contrast to conventional discriminators that predict a single real/fake label for the synthesized image, the proposed discriminator generates a pixel-wise visibility map, providing fine-grained supervision for unseen areas and encouraging the VA-NeRF to improve the visual quality of synthesized images. Experiments on the Interhand2.6M dataset demonstrate that our proposed VA-NeRF outperforms conventional NeRFs significantly. Project Page: \url{https://github.com/XuanHuang0/VANeRF}.
Abstract:Coarse-to-fine schemes are widely used in traditional single-image motion deblur; however, in the context of deep learning, existing multi-scale algorithms not only require the use of complex modules for feature fusion of low-scale RGB images and deep semantics, but also manually generate low-resolution pairs of images that do not have sufficient confidence. In this work, we propose a multi-scale network based on single-input and multiple-outputs(SIMO) for motion deblurring. This simplifies the complexity of algorithms based on a coarse-to-fine scheme. To alleviate restoration defects impacting detail information brought about by using a multi-scale architecture, we combine the characteristics of real-world blurring trajectories with a learnable wavelet transform module to focus on the directional continuity and frequency features of the step-by-step transitions between blurred images to sharp images. In conclusion, we propose a multi-scale network with a learnable discrete wavelet transform (MLWNet), which exhibits state-of-the-art performance on multiple real-world deblurred datasets, in terms of both subjective and objective quality as well as computational efficiency.
Abstract:Current parametric models have made notable progress in 3D hand pose and shape estimation. However, due to the fixed hand topology and complex hand poses, current models are hard to generate meshes that are aligned with the image well. To tackle this issue, we introduce a dual noise estimation method in this paper. Given a single-view image as input, we first adopt a baseline parametric regressor to obtain the coarse hand meshes. We assume the mesh vertices and their image-plane projections are noisy, and can be associated in a unified probabilistic model. We then learn the distributions of noise to refine mesh vertices and their projections. The refined vertices are further utilized to refine camera parameters in a closed-form manner. Consequently, our method obtains well-aligned and high-quality 3D hand meshes. Extensive experiments on the large-scale Interhand2.6M dataset demonstrate that the proposed method not only improves the performance of its baseline by more than 10$\%$ but also achieves state-of-the-art performance. Project page: \url{https://github.com/hanhuili/DNE4Hand}.
Abstract:Vision-based tactile sensors equipped with planar contact structures acquire the shape, force, and motion states of objects in contact. The limited planar contact area presents a challenge in acquiring information about larger target objects. In contrast, vision-based tactile sensors with cylindrical contact structures could extend the contact area by rolling, which can acquire much tactile information that exceeds the sensing projection area in a single contact. However, the tactile data acquired by cylindrical structures does not consistently correspond to the same depth level. Therefore, stitching and analyzing the data in an extended contact area is a challenging problem. In this work, we propose an image fusion method based on cylindrical vision-based tactile sensors. The method takes advantage of the changing characteristics of the contact depth of cylindrical structures, extracts the effective information of different contact depths in the frequency domain, and performs differential fusion for the information characteristics. The results show that in object contact confronting an area larger than single sensing, the images fused with our proposed method have higher information and structural similarity compared with the method of stitching based on motion distance sampling. Meanwhile, it is robust to sampling time. We complement this method with a deep neural network to illustrate its potential for fusing and recognizing object contact information using cylindrical vision-based tactile sensors.
Abstract:With the development of hardware and algorithms, ASR(Automatic Speech Recognition) systems evolve a lot. As The models get simpler, the difficulty of development and deployment become easier, ASR systems are getting closer to our life. On the one hand, we often use APPs or APIs of ASR to generate subtitles and record meetings. On the other hand, smart speaker and self-driving car rely on ASR systems to control AIoT devices. In past few years, there are a lot of works on adversarial examples attacks against ASR systems. By adding a small perturbation to the waveforms, the recognition results make a big difference. In this paper, we describe the development of ASR system, different assumptions of attacks, and how to evaluate these attacks. Next, we introduce the current works on adversarial examples attacks from two attack assumptions: white-box attack and black-box attack. Different from other surveys, we pay more attention to which layer they perturb waveforms in ASR system, the relationship between these attacks, and their implementation methods. We focus on the effect of their works.
Abstract:Recent years have witnessed the great advance of deep learning in a variety of vision tasks. Many state-of-the-art deep neural networks suffer from large size and high complexity, which makes it difficult to deploy in resource-limited platforms such as mobile devices. To this end, low-precision neural networks are widely studied which quantize weights or activations into the low-bit format. Though being efficient, low-precision networks are usually hard to train and encounter severe accuracy degradation. In this paper, we propose a new training strategy through expanding low-precision networks during training and removing the expanded parts for network inference. First, we equip each low-precision convolutional layer with an ancillary full-precision convolutional layer based on a low-precision network structure, which could guide the network to good local minima. Second, a decay method is introduced to reduce the output of the added full-precision convolution gradually, which keeps the resulted topology structure the same to the original low-precision one. Experiments on SVHN, CIFAR and ILSVRC-2012 datasets prove that the proposed method can bring faster convergence and higher accuracy for low-precision neural networks.