Abstract:This paper investigates a low-altitude integrated sensing and communication (ISAC) system that leverages cooperative rotatable active and passive arrays. We consider a downlink scenario where a base station (BS) with an active rotatable array serves multiple communication users and senses low-altitude targets, assisted by a rotatable reconfigurable intelligent surface (RIS). A rotation-aware geometry-based multipath model is developed to capture the impact of three-dimensional (3D) array orientations on both steering vectors and direction-dependent element gains. On this basis, we formulate a new optimization problem that maximizes the downlink sum rate subject to a transmit power budget, RIS unit-modulus constraints, mechanical rotation limits, and a sensing beampattern mean-squared-error (MSE) constraint. To address the resulting highly non-convex problem, we propose a penalty-based alternating-optimization (AO) framework that alternately updates the BS precoder, RIS phase shifts, and BS/RIS array rotation angles. The three blocks are efficiently handled via a convex optimization method based on quadratic-transform (QT) and majorization-minorization (MM), Riemannian conjugate gradient (RCG) on the unit-modulus manifold, and projected gradient descent (PGD) with Barzilai-Borwein step sizes, respectively. Numerical results in low-altitude geometries demonstrate that the proposed jointly rotatable BS-RIS architecture achieves significant sum-rate gains over fixed or partially rotatable baselines while guaranteeing sensing requirements, especially with directional antennas and in interference-limited regimes.
Abstract:Low-altitude unmanned aerial vehicle (UAV) networks are integral to future 6G integrated sensing and communication (ISAC) systems. However, their deployment is hindered by challenges stemming from high mobility of UAVs, complex propagation environments, and the inherent trade-offs between coexisting sensing and communication functions. This article proposes a novel framework that leverages movable antennas (MAs) and intelligent reflecting surfaces (IRSs) as dual enablers to overcome these limitations. MAs, through active transceiver reconfiguration, and IRSs, via passive channel reconstruction, can work in synergy to significantly enhance system performance. Our analysis first elaborates on the fundamental gains offered by MAs and IRSs, and provides simulation results that validate the immense potential of the MA-IRS-enabled ISAC architecture. Two core UAV deployment scenarios are then investigated: (i) UAVs as ISAC users, where we focus on achieving high-precision tracking and aerial safety, and (ii) UAVs as aerial network nodes, where we address robust design and complex coupled resource optimization. Finally, key technical challenges and research opportunities are identified and analyzed for each scenario, charting a clear course for the future design of advanced low-altitude ISAC networks.
Abstract:Future wireless networks are envisioned to deliver not only gigabit communications but also ubiquitous sensing. Reconfigurable intelligent surfaces (RISs) have emerged to reshape radio propagation, recently showing considerable promise for wireless sensing. Still, their per-element electronic tuning incurs prohibitive hardware cost and power consumption. Motivated by the concept of fluid antenna system (FAS), this paper introduces a low-cost movable intelligent surface (MIS) for wireless sensing, which replaces element-wise electronic phase tuning with panel-wise mechanical reconfiguration. The MIS stacks a large fixed and a smaller movable pre-phased metasurface layers, whose differential position shifts synthesize distinct composite phase patterns, enabling multiple beam patterns for multi-target detection. We characterize a MIS-enabled multi-hop echo signal model with multi-target interference and then formulate a worst-case sensing signal-to-interference-plus-noise ratio (SINR) maximization problem that jointly designs MIS phase shifts and schedules MS2's position. A Riemannian Augmented Lagrangian Method (RALM)-based algorithm is developed to solve the formulated mixed-integer non-convex problem. We also derive a heuristic MIS beam steering design with closed-form phase distribution and position scheduling. Simulations validate MIS's beam pattern reconfiguration capability, show that the RALM-based scheme significantly outperforms the closed-form scheme in improving sensing SINR, and uncover a gain-diversity trade-off in beam patterns that informs the optimal choice of MIS configuration.




Abstract:Movable antennas (MAs) and intelligent reflecting surfaces (IRSs) enable active antenna repositioning and passive phase-shift tuning for channel reconfiguration, respectively. Integrating MAs and IRSs boosts spatial degrees of freedom, significantly enhancing wireless network capacity, coverage, and reliability. In this article, we first present the fundamentals of MA-IRS integration, involving clarifying the key design issues, revealing performance gain, and identifying the conditions where MA-IRS synergy persists. Then, we examine practical challenges and propose pragmatic design solutions, including optimization schemes, hardware architectures, deployment strategies, and robust designs for hardware impairments and mobility management. In addition, we highlight how MA-IRS architectures uniquely support advanced integrated sensing and communication, enhancing sensing performance and dual-functional flexibility. Overall, MA-IRS integration emerges as a compelling approach toward next-generation reconfigurable wireless systems.
Abstract:Understanding the physical world - governed by laws of motion, spatial relations, and causality - poses a fundamental challenge for multimodal large language models (MLLMs). While recent advances such as OpenAI o3 and GPT-4o demonstrate impressive perceptual and reasoning capabilities, our investigation reveals these models struggle profoundly with visual physical reasoning, failing to grasp basic physical laws, spatial interactions, and causal effects in complex scenes. More importantly, they often fail to follow coherent reasoning chains grounded in visual evidence, especially when multiple steps are needed to arrive at the correct answer. To rigorously evaluate this capability, we introduce MVPBench, a curated benchmark designed to rigorously evaluate visual physical reasoning through the lens of visual chain-of-thought (CoT). Each example features interleaved multi-image inputs and demands not only the correct final answer but also a coherent, step-by-step reasoning path grounded in evolving visual cues. This setup mirrors how humans reason through real-world physical processes over time. To ensure fine-grained evaluation, we introduce a graph-based CoT consistency metric that verifies whether the reasoning path of model adheres to valid physical logic. Additionally, we minimize shortcut exploitation from text priors, encouraging models to rely on visual understanding. Experimental results reveal a concerning trend: even cutting-edge MLLMs exhibit poor visual reasoning accuracy and weak image-text alignment in physical domains. Surprisingly, RL-based post-training alignment - commonly believed to improve visual reasoning performance - often harms spatial reasoning, suggesting a need to rethink current fine-tuning practices.
Abstract:Reconfigurable intelligent surfaces enhance wireless systems by reshaping propagation environments. However, dynamic metasurfaces (MSs) with numerous phase-shift elements incur undesired control and hardware costs. In contrast, static MSs (SMSs), configured with static phase shifts pre-designed for specific communication demands, offer a cost-effective alternative by eliminating element-wise tuning. Nevertheless, SMSs typically support a single beam pattern with limited flexibility. In this paper, we propose a novel Movable Intelligent Surface (MIS) technology that enables dynamic beamforming while maintaining static phase shifts. Specifically, we design a MIS architecture comprising two closely stacked transmissive MSs: a larger fixed-position MS 1 and a smaller movable MS 2. By differentially shifting MS 2's position relative to MS 1, the MIS synthesizes distinct beam patterns. Then, we model the interaction between MS 2 and MS 1 using binary selection matrices and padding vectors and formulate a new optimization problem that jointly designs the MIS phase shifts and selects shifting positions for worst-case signal-to-noise ratio maximization. This position selection, equal to beam pattern scheduling, offers a new degree of freedom for RIS-aided systems. To solve the intractable problem, we develop an efficient algorithm that handles unit-modulus and binary constraints and employs manifold optimization methods. Finally, extensive validation results are provided. We implement a MIS prototype and perform proof-of-concept experiments, demonstrating the MIS's ability to synthesize desired beam patterns that achieve one-dimensional beam steering. Numerical results show that by introducing MS 2 with a few elements, MIS effectively offers beamforming flexibility for significantly improved performance. We also draw insights into the optimal MIS configuration and element allocation strategy.
Abstract:Movable antennas (MAs), which can be swiftly repositioned within a defined region, offer a promising solution to the limitations of fixed-position antennas (FPAs) in adapting to spatial variations in wireless channels, thereby improving channel conditions and communication between transceivers. However, frequent MA position adjustments based on instantaneous channel state information (CSI) incur high operational complexity, making real-time CSI acquisition impractical, especially in fast-fading channels. To address these challenges, we propose a two-timescale transmission framework for MA-enabled multiuser multiple-input-multiple-output (MU-MIMO) systems. In the large timescale, statistical CSI is exploited to optimize MA positions for long-term ergodic performance, whereas, in the small timescale, beamforming vectors are designed using instantaneous CSI to handle short-term channel fluctuations. Within this new framework, we analyze the ergodic sum rate and develop efficient MA position optimization algorithms for both maximum-ratio-transmission (MRT) and zero-forcing (ZF) beamforming schemes. These algorithms employ alternating optimization (AO), successive convex approximation (SCA), and majorization-minimization (MM) techniques, iteratively optimizing antenna positions and refining surrogate functions that approximate the ergodic sum rate. Numerical results show significant ergodic sum rate gains with the proposed two-timescale MA design over conventional FPA systems, particularly under moderate to strong line-of-sight (LoS) conditions. Notably, MA with ZF beamforming consistently outperforms MA with MRT, highlighting the synergy between beamforming and MAs for superior interference management in environments with moderate Rician factors and high user density, while MA with MRT can offer a simplified alternative to complex beamforming designs in strong LoS conditions.