Abstract:Speech is a noninvasive digital phenotype that can offer valuable insights into mental health conditions, but it is often treated as a single modality. In contrast, we propose the treatment of patient speech data as a trimodal multimedia data source for depression detection. This study explores the potential of large language model-based architectures for speech-based depression prediction in a multimodal regime that integrates speech-derived text, acoustic landmarks, and vocal biomarkers. Adolescent depression presents a significant challenge and is often comorbid with multiple disorders, such as suicidal ideation and sleep disturbances. This presents an additional opportunity to integrate multi-task learning (MTL) into our study by simultaneously predicting depression, suicidal ideation, and sleep disturbances using the multimodal formulation. We also propose a longitudinal analysis strategy that models temporal changes across multiple clinical interactions, allowing for a comprehensive understanding of the conditions' progression. Our proposed approach, featuring trimodal, longitudinal MTL is evaluated on the Depression Early Warning dataset. It achieves a balanced accuracy of 70.8%, which is higher than each of the unimodal, single-task, and non-longitudinal methods.
Abstract:This paper presents aUToPath, a unified online framework for global path-planning and control to address the challenge of autonomous navigation in cluttered urban environments. A key component of our framework is a novel hybrid planner that combines pre-computed lattice maps with dynamic free-space sampling to efficiently generate optimal driveable corridors in cluttered scenarios. Our system also features sequential convex programming (SCP)-based model predictive control (MPC) to refine the corridors into smooth, dynamically consistent trajectories. A single optimization problem is used to both generate a trajectory and its corresponding control commands; this addresses limitations of decoupled approaches by guaranteeing a safe and feasible path. Simulation results of the novel planner on randomly generated obstacle-rich scenarios demonstrate the success rate of a free-space Adaptively Informed Trees* (AIT*)-based planner, and runtimes comparable to a lattice-based planner. Real-world experiments of the full system on a Chevrolet Bolt EUV further validate performance in dense obstacle fields, demonstrating no violations of traffic, kinematic, or vehicle constraints, and a 100% success rate across eight trials.
Abstract:This paper presents Swarm-GPT, a system that integrates large language models (LLMs) with safe swarm motion planning - offering an automated and novel approach to deployable drone swarm choreography. Swarm-GPT enables users to automatically generate synchronized drone performances through natural language instructions. With an emphasis on safety and creativity, Swarm-GPT addresses a critical gap in the field of drone choreography by integrating the creative power of generative models with the effectiveness and safety of model-based planning algorithms. This goal is achieved by prompting the LLM to generate a unique set of waypoints based on extracted audio data. A trajectory planner processes these waypoints to guarantee collision-free and feasible motion. Results can be viewed in simulation prior to execution and modified through dynamic re-prompting. Sim-to-real transfer experiments demonstrate Swarm-GPT's ability to accurately replicate simulated drone trajectories, with a mean sim-to-real root mean square error (RMSE) of 28.7 mm. To date, Swarm-GPT has been successfully showcased at three live events, exemplifying safe real-world deployment of pre-trained models.