Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Thomas Unterthiner

GradMax: Growing Neural Networks using Gradient Information

Jan 13, 2022
Utku Evci, Max Vladymyrov, Thomas Unterthiner, Bart van Merri├źnboer, Fabian Pedregosa

  Access Paper or Ask Questions

Do Vision Transformers See Like Convolutional Neural Networks?

Aug 19, 2021
Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, Alexey Dosovitskiy

  Access Paper or Ask Questions

MLP-Mixer: An all-MLP Architecture for Vision

May 17, 2021
Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy

* Fixed parameter counts in Table 1 

  Access Paper or Ask Questions

Differentiable Patch Selection for Image Recognition

Apr 07, 2021
Jean-Baptiste Cordonnier, Aravindh Mahendran, Alexey Dosovitskiy, Dirk Weissenborn, Jakob Uszkoreit, Thomas Unterthiner

* Accepted to IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021. Code available at 

  Access Paper or Ask Questions

Understanding Robustness of Transformers for Image Classification

Mar 26, 2021
Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, Andreas Veit

  Access Paper or Ask Questions

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Oct 22, 2020
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby

* Fine-tuning code and pre-trained models are available at 

  Access Paper or Ask Questions

Object-Centric Learning with Slot Attention

Jun 26, 2020
Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, Thomas Kipf

  Access Paper or Ask Questions

Predicting Neural Network Accuracy from Weights

Feb 26, 2020
Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, Ilya Tolstikhin

  Access Paper or Ask Questions

Interpretable Deep Learning in Drug Discovery

Mar 18, 2019
Kristina Preuer, G├╝nter Klambauer, Friedrich Rippmann, Sepp Hochreiter, Thomas Unterthiner

* Code available at 

  Access Paper or Ask Questions

Towards Accurate Generative Models of Video: A New Metric & Challenges

Dec 03, 2018
Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, Sylvain Gelly

  Access Paper or Ask Questions

Fr├ęchet ChemNet Distance: A metric for generative models for molecules in drug discovery

Aug 01, 2018
Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, G├╝nter Klambauer

* Implementations are available at: 

  Access Paper or Ask Questions

RUDDER: Return Decomposition for Delayed Rewards

Jun 20, 2018
Jose A. Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Sepp Hochreiter

* 9 Pages plus appendix. For the code For videos 

  Access Paper or Ask Questions

First Order Generative Adversarial Networks

Jun 07, 2018
Calvin Seward, Thomas Unterthiner, Urs Bergmann, Nikolay Jetchev, Sepp Hochreiter

* Accepted to 35th International Conference on Machine Learning (ICML). Code to reproduce experiments is available 

  Access Paper or Ask Questions

Coulomb GANs: Provably Optimal Nash Equilibria via Potential Fields

Jan 30, 2018
Thomas Unterthiner, Bernhard Nessler, Calvin Seward, G├╝nter Klambauer, Martin Heusel, Hubert Ramsauer, Sepp Hochreiter

* Published as a conference paper at ICLR (International Conference on Learning Representations) 2018. Implementation available at 

  Access Paper or Ask Questions

GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium

Jan 12, 2018
Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter

* Advances in Neural Information Processing Systems 30 (NIPS 2017) 
* Implementations are available at: 

  Access Paper or Ask Questions

Self-Normalizing Neural Networks

Sep 07, 2017
G├╝nter Klambauer, Thomas Unterthiner, Andreas Mayr, Sepp Hochreiter

* Advances in Neural Information Processing Systems 30 (NIPS 2017) 
* 9 pages (+ 93 pages appendix) 

  Access Paper or Ask Questions

Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)

Feb 22, 2016
Djork-Arn├ę Clevert, Thomas Unterthiner, Sepp Hochreiter

* Published as a conference paper at ICLR 2016 

  Access Paper or Ask Questions

Rectified Factor Networks

Jun 11, 2015
Djork-Arn├ę Clevert, Andreas Mayr, Thomas Unterthiner, Sepp Hochreiter

* Advances in Neural Information Processing Systems 28 (NIPS 2015) 
* 9 pages + 49 pages supplement 

  Access Paper or Ask Questions

Toxicity Prediction using Deep Learning

Mar 04, 2015
Thomas Unterthiner, Andreas Mayr, G├╝nter Klambauer, Sepp Hochreiter

  Access Paper or Ask Questions