Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Maxim Neumann

Continental-Scale Building Detection from High Resolution Satellite Imagery


Jul 29, 2021
Wojciech Sirko, Sergii Kashubin, Marvin Ritter, Abigail Annkah, Yasser Salah Eddine Bouchareb, Yann Dauphin, Daniel Keysers, Maxim Neumann, Moustapha Cisse, John Quinn


  Access Paper or Ask Questions

Scaling Vision with Sparse Mixture of Experts


Jun 10, 2021
Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André Susano Pinto, Daniel Keysers, Neil Houlsby

* 44 pages, 38 figures 

  Access Paper or Ask Questions

Training general representations for remote sensing using in-domain knowledge


Sep 30, 2020
Maxim Neumann, André Susano Pinto, Xiaohua Zhai, Neil Houlsby

* Accepted at the IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2020. arXiv admin note: substantial text overlap with arXiv:1911.06721 

  Access Paper or Ask Questions

AttentionNAS: Spatiotemporal Attention Cell Search for Video Classification


Jul 31, 2020
Xiaofang Wang, Xuehan Xiong, Maxim Neumann, AJ Piergiovanni, Michael S. Ryoo, Anelia Angelova, Kris M. Kitani, Wei Hua

* ECCV 2020 

  Access Paper or Ask Questions

In-domain representation learning for remote sensing


Nov 15, 2019
Maxim Neumann, Andre Susano Pinto, Xiaohua Zhai, Neil Houlsby


  Access Paper or Ask Questions

The Visual Task Adaptation Benchmark


Oct 01, 2019
Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer, Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, Neil Houlsby


  Access Paper or Ask Questions

Progressive Neural Architecture Search


Jul 26, 2018
Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy

* To appear in ECCV 2018 as oral. The code and checkpoint for PNASNet-5 trained on ImageNet (both Mobile and Large) can now be downloaded from https://github.com/tensorflow/models/tree/master/research/slim#Pretrained. Also see https://github.com/chenxi116/PNASNet.TF for refactored and simplified TensorFlow code; see https://github.com/chenxi116/PNASNet.pytorch for exact conversion to PyTorch 

  Access Paper or Ask Questions