Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Lucas Beyer

How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers

Jun 18, 2021
Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, Lucas Beyer

* Andreas, Alex, Xiaohua and Lucas contributed equally. We release more than 50'000 ViT models trained under diverse settings on various datasets. We believe this to be a treasure trove for model analysis. Available at and 

  Access Paper or Ask Questions

Knowledge distillation: A good teacher is patient and consistent

Jun 09, 2021
Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva, Rohan Anil, Alexander Kolesnikov

* Lucas, Xiaohua, Am\'elie, Larisa, and Alex contributed equally 

  Access Paper or Ask Questions

Scaling Vision Transformers

Jun 08, 2021
Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, Lucas Beyer

* Xiaohua, Alex, and Lucas contributed equally 

  Access Paper or Ask Questions

MLP-Mixer: An all-MLP Architecture for Vision

May 17, 2021
Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy

* Fixed parameter counts in Table 1 

  Access Paper or Ask Questions

SI-Score: An image dataset for fine-grained analysis of robustness to object location, rotation and size

Apr 09, 2021
Jessica Yung, Rob Romijnders, Alexander Kolesnikov, Lucas Beyer, Josip Djolonga, Neil Houlsby, Sylvain Gelly, Mario Lucic, Xiaohua Zhai

* 4 pages (10 pages including references and appendix), 10 figures. Accepted at the ICLR 2021 RobustML Workshop. arXiv admin note: text overlap with arXiv:2007.08558 

  Access Paper or Ask Questions

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Oct 22, 2020
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby

* Fine-tuning code and pre-trained models are available at 

  Access Paper or Ask Questions

On Robustness and Transferability of Convolutional Neural Networks

Jul 16, 2020
Josip Djolonga, Jessica Yung, Michael Tschannen, Rob Romijnders, Lucas Beyer, Alexander Kolesnikov, Joan Puigcerver, Matthias Minderer, Alexander D'Amour, Dan Moldovan, Sylvan Gelly, Neil Houlsby, Xiaohua Zhai, Mario Lucic

  Access Paper or Ask Questions

Are we done with ImageNet?

Jun 12, 2020
Lucas Beyer, Olivier J. Hénaff, Alexander Kolesnikov, Xiaohua Zhai, Aäron van den Oord

* All five authors contributed equally. New labels at 

  Access Paper or Ask Questions

Large Scale Learning of General Visual Representations for Transfer

Dec 24, 2019
Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby

  Access Paper or Ask Questions

The Visual Task Adaptation Benchmark

Oct 01, 2019
Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer, Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, Neil Houlsby

  Access Paper or Ask Questions

MULEX: Disentangling Exploitation from Exploration in Deep RL

Jul 01, 2019
Lucas Beyer, Damien Vincent, Olivier Teboul, Sylvain Gelly, Matthieu Geist, Olivier Pietquin

  Access Paper or Ask Questions

Deep multi-class learning from label proportions

May 30, 2019
Gabriel Dulac-Arnold, Neil Zeghidour, Marco Cuturi, Lucas Beyer, Jean-Philippe Vert

  Access Paper or Ask Questions

S$^\mathbf{4}$L: Self-Supervised Semi-Supervised Learning

May 09, 2019
Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, Lucas Beyer

* All four authors contributed equally 

  Access Paper or Ask Questions

Revisiting Self-Supervised Visual Representation Learning

Jan 25, 2019
Alexander Kolesnikov, Xiaohua Zhai, Lucas Beyer

* All three authors contributed equally. Code is available at 

  Access Paper or Ask Questions

Detection-Tracking for Efficient Person Analysis: The DetTA Pipeline

Jul 28, 2018
Stefan Breuers, Lucas Beyer, Umer Rafi, Bastian Leibe

* Code available at: 

  Access Paper or Ask Questions

Deep Person Detection in 2D Range Data

Apr 06, 2018
Lucas Beyer, Alexander Hermans, Timm Linder, Kai O. Arras, Bastian Leibe

  Access Paper or Ask Questions

In Defense of the Triplet Loss for Person Re-Identification

Nov 21, 2017
Alexander Hermans, Lucas Beyer, Bastian Leibe

* Lucas Beyer and Alexander Hermans contributed equally. Updates: Minor fixes, new SOTA comparisons, add CUHK03 results 

  Access Paper or Ask Questions

The Atari Grand Challenge Dataset

May 31, 2017
Vitaly Kurin, Sebastian Nowozin, Katja Hofmann, Lucas Beyer, Bastian Leibe

  Access Paper or Ask Questions

Towards a Principled Integration of Multi-Camera Re-Identification and Tracking through Optimal Bayes Filters

May 16, 2017
Lucas Beyer, Stefan Breuers, Vitaly Kurin, Bastian Leibe

* First two authors have equal contribution. This is initial work into a new direction, not a benchmark-beating method. v2 only adds acknowledgements and fixes a typo in e-mail 

  Access Paper or Ask Questions

DROW: Real-Time Deep Learning based Wheelchair Detection in 2D Range Data

Dec 05, 2016
Lucas Beyer, Alexander Hermans, Bastian Leibe

* Lucas Beyer and Alexander Hermans contributed equally 

  Access Paper or Ask Questions

The STRANDS Project: Long-Term Autonomy in Everyday Environments

Oct 14, 2016
Nick Hawes, Chris Burbridge, Ferdian Jovan, Lars Kunze, Bruno Lacerda, Lenka Mudrová, Jay Young, Jeremy Wyatt, Denise Hebesberger, Tobias Körtner, Rares Ambrus, Nils Bore, John Folkesson, Patric Jensfelt, Lucas Beyer, Alexander Hermans, Bastian Leibe, Aitor Aldoma, Thomas Fäulhammer, Michael Zillich, Markus Vincze, Eris Chinellato, Muhannad Al-Omari, Paul Duckworth, Yiannis Gatsoulis, David C. Hogg, Anthony G. Cohn, Christian Dondrup, Jaime Pulido Fentanes, Tomas Krajník, João M. Santos, Tom Duckett, Marc Hanheide

  Access Paper or Ask Questions