Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Lynn Chua, Qiliang Cui, Badih Ghazi, Charlie Harrison, Pritish Kamath, Walid Krichene, Ravi Kumar, Pasin Manurangsi, Krishna Giri Narra, Amer Sinha, Avinash Varadarajan, Chiyuan Zhang

Motivated by problems arising in digital advertising, we introduce the task of training differentially private (DP) machine learning models with semi-sensitive features. In this setting, a subset of the features is known to the attacker (and thus need not be protected) while the remaining features as well as the label are unknown to the attacker and should be protected by the DP guarantee. This task interpolates between training the model with full DP (where the label and all features should be protected) or with label DP (where all the features are considered known, and only the label should be protected). We present a new algorithm for training DP models with semi-sensitive features. Through an empirical evaluation on real ads datasets, we demonstrate that our algorithm surpasses in utility the baselines of (i) DP stochastic gradient descent (DP-SGD) run on all features (known and unknown), and (ii) a label DP algorithm run only on the known features (while discarding the unknown ones).

Via

Ashwinkumar Badanidiyuru, Badih Ghazi, Pritish Kamath, Ravi Kumar, Ethan Leeman, Pasin Manurangsi, Avinash V Varadarajan, Chiyuan Zhang

We propose a new family of label randomizers for training regression models under the constraint of label differential privacy (DP). In particular, we leverage the trade-offs between bias and variance to construct better label randomizers depending on a privately estimated prior distribution over the labels. We demonstrate that these randomizers achieve state-of-the-art privacy-utility trade-offs on several datasets, highlighting the importance of reducing bias when training neural networks with label DP. We also provide theoretical results shedding light on the structural properties of the optimal unbiased randomizers.

Via

Badih Ghazi, Yangsibo Huang, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Amer Sinha, Chiyuan Zhang

As the use of large embedding models in recommendation systems and language applications increases, concerns over user data privacy have also risen. DP-SGD, a training algorithm that combines differential privacy with stochastic gradient descent, has been the workhorse in protecting user privacy without compromising model accuracy by much. However, applying DP-SGD naively to embedding models can destroy gradient sparsity, leading to reduced training efficiency. To address this issue, we present two new algorithms, DP-FEST and DP-AdaFEST, that preserve gradient sparsity during private training of large embedding models. Our algorithms achieve substantial reductions ($10^6 \times$) in gradient size, while maintaining comparable levels of accuracy, on benchmark real-world datasets.

Via

Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Raghu Meka, Chiyuan Zhang

Previous work on user-level differential privacy (DP) [Ghazi et al. NeurIPS 2021, Bun et al. STOC 2023] obtained generic algorithms that work for various learning tasks. However, their focus was on the example-rich regime, where the users have so many examples that each user could themselves solve the problem. In this work we consider the example-scarce regime, where each user has only a few examples, and obtain the following results: 1. For approximate-DP, we give a generic transformation of any item-level DP algorithm to a user-level DP algorithm. Roughly speaking, the latter gives a (multiplicative) savings of $O_{\varepsilon,\delta}(\sqrt{m})$ in terms of the number of users required for achieving the same utility, where $m$ is the number of examples per user. This algorithm, while recovering most known bounds for specific problems, also gives new bounds, e.g., for PAC learning. 2. For pure-DP, we present a simple technique for adapting the exponential mechanism [McSherry, Talwar FOCS 2007] to the user-level setting. This gives new bounds for a variety of tasks, such as private PAC learning, hypothesis selection, and distribution learning. For some of these problems, we show that our bounds are near-optimal.

Via

Pratyush Maini, Michael C. Mozer, Hanie Sedghi, Zachary C. Lipton, J. Zico Kolter, Chiyuan Zhang

Recent efforts at explaining the interplay of memorization and generalization in deep overparametrized networks have posited that neural networks $\textit{memorize}$ "hard" examples in the final few layers of the model. Memorization refers to the ability to correctly predict on $\textit{atypical}$ examples of the training set. In this work, we show that rather than being confined to individual layers, memorization is a phenomenon confined to a small set of neurons in various layers of the model. First, via three experimental sources of converging evidence, we find that most layers are redundant for the memorization of examples and the layers that contribute to example memorization are, in general, not the final layers. The three sources are $\textit{gradient accounting}$ (measuring the contribution to the gradient norms from memorized and clean examples), $\textit{layer rewinding}$ (replacing specific model weights of a converged model with previous training checkpoints), and $\textit{retraining}$ (training rewound layers only on clean examples). Second, we ask a more generic question: can memorization be localized $\textit{anywhere}$ in a model? We discover that memorization is often confined to a small number of neurons or channels (around 5) of the model. Based on these insights we propose a new form of dropout -- $\textit{example-tied dropout}$ that enables us to direct the memorization of examples to an apriori determined set of neurons. By dropping out these neurons, we are able to reduce the accuracy on memorized examples from $100\%\to3\%$, while also reducing the generalization gap.

Via

Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Ayush Sekhari, Chiyuan Zhang

We consider the learning--unlearning paradigm defined as follows. First given a dataset, the goal is to learn a good predictor, such as one minimizing a certain loss. Subsequently, given any subset of examples that wish to be unlearnt, the goal is to learn, without the knowledge of the original training dataset, a good predictor that is identical to the predictor that would have been produced when learning from scratch on the surviving examples. We propose a new ticketed model for learning--unlearning wherein the learning algorithm can send back additional information in the form of a small-sized (encrypted) ``ticket'' to each participating training example, in addition to retaining a small amount of ``central'' information for later. Subsequently, the examples that wish to be unlearnt present their tickets to the unlearning algorithm, which additionally uses the central information to return a new predictor. We provide space-efficient ticketed learning--unlearning schemes for a broad family of concept classes, including thresholds, parities, intersection-closed classes, among others. En route, we introduce the count-to-zero problem, where during unlearning, the goal is to simply know if there are any examples that survived. We give a ticketed learning--unlearning scheme for this problem that relies on the construction of Sperner families with certain properties, which might be of independent interest.

Via

Badih Ghazi, Pritish Kamath, Ravi Kumar, Raghu Meka, Pasin Manurangsi, Chiyuan Zhang

We introduce a new mechanism for stochastic convex optimization (SCO) with user-level differential privacy guarantees. The convergence rates of this mechanism are similar to those in the prior work of Levy et al. (2021); Narayanan et al. (2022), but with two important improvements. Our mechanism does not require any smoothness assumptions on the loss. Furthermore, our bounds are also the first where the minimum number of users needed for user-level privacy has no dependence on the dimension and only a logarithmic dependence on the desired excess error. The main idea underlying the new mechanism is to show that the optimizers of strongly convex losses have low local deletion sensitivity, along with an output perturbation method for functions with low local deletion sensitivity, which could be of independent interest.

Via

Badih Ghazi, Pritish Kamath, Ravi Kumar, Ethan Leeman, Pasin Manurangsi, Avinash Varadarajan, Chiyuan Zhang

We study the task of training regression models with the guarantee of label differential privacy (DP). Based on a global prior distribution on label values, which could be obtained privately, we derive a label DP randomization mechanism that is optimal under a given regression loss function. We prove that the optimal mechanism takes the form of a ``randomized response on bins'', and propose an efficient algorithm for finding the optimal bin values. We carry out a thorough experimental evaluation on several datasets demonstrating the efficacy of our algorithm.

Via

Carson Denison, Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Krishna Giri Narra, Amer Sinha, Avinash Varadarajan, Chiyuan Zhang

A well-known algorithm in privacy-preserving ML is differentially private stochastic gradient descent (DP-SGD). While this algorithm has been evaluated on text and image data, it has not been previously applied to ads data, which are notorious for their high class imbalance and sparse gradient updates. In this work we apply DP-SGD to several ad modeling tasks including predicting click-through rates, conversion rates, and number of conversion events, and evaluate their privacy-utility trade-off on real-world datasets. Our work is the first to empirically demonstrate that DP-SGD can provide both privacy and utility for ad modeling tasks.

Via

Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan Zhang, Matthew Jagielski, Katherine Lee, Christopher A. Choquette-Choo, Nicholas Carlini

Studying data memorization in neural language models helps us understand the risks (e.g., to privacy or copyright) associated with models regurgitating training data, and aids in the evaluation of potential countermeasures. Many prior works -- and some recently deployed defenses -- focus on "verbatim memorization", defined as a model generation that exactly matches a substring from the training set. We argue that verbatim memorization definitions are too restrictive and fail to capture more subtle forms of memorization. Specifically, we design and implement an efficient defense based on Bloom filters that perfectly prevents all verbatim memorization. And yet, we demonstrate that this "perfect" filter does not prevent the leakage of training data. Indeed, it is easily circumvented by plausible and minimally modified "style-transfer" prompts -- and in some cases even the non-modified original prompts -- to extract memorized information. For example, instructing the model to output ALL-CAPITAL texts bypasses memorization checks based on verbatim matching. We conclude by discussing potential alternative definitions and why defining memorization is a difficult yet crucial open question for neural language models.

Via