Abstract:Face animation is a challenging task. Existing model-based methods (utilizing 3DMMs or landmarks) often result in a model-like reconstruction effect, which doesn't effectively preserve identity. Conversely, model-free approaches face challenges in attaining a decoupled and semantically rich feature space, thereby making accurate motion transfer difficult to achieve. We introduce the semantic facial descriptors in learnable disentangled vector space to address the dilemma. The approach involves decoupling the facial space into identity and motion subspaces while endowing each of them with semantics by learning complete orthogonal basis vectors. We obtain basis vector coefficients by employing an encoder on the source and driving faces, leading to effective facial descriptors in the identity and motion subspaces. Ultimately, these descriptors can be recombined as latent codes to animate faces. Our approach successfully addresses the issue of model-based methods' limitations in high-fidelity identity and the challenges faced by model-free methods in accurate motion transfer. Extensive experiments are conducted on three challenging benchmarks (i.e. VoxCeleb, HDTF, CelebV). Comprehensive quantitative and qualitative results demonstrate that our model outperforms SOTA methods with superior identity preservation and motion transfer.
Abstract:The acquisition of inductive bias through point-level contrastive learning holds paramount significance in point cloud pre-training. However, the square growth in computational requirements with the scale of the point cloud poses a substantial impediment to the practical deployment and execution. To address this challenge, this paper proposes an Effective Point-level Contrastive Learning method for large-scale point cloud understanding dubbed \textbf{EPContrast}, which consists of AGContrast and ChannelContrast. In practice, AGContrast constructs positive and negative pairs based on asymmetric granularity embedding, while ChannelContrast imposes contrastive supervision between channel feature maps. EPContrast offers point-level contrastive loss while concurrently mitigating the computational resource burden. The efficacy of EPContrast is substantiated through comprehensive validation on S3DIS and ScanNetV2, encompassing tasks such as semantic segmentation, instance segmentation, and object detection. In addition, rich ablation experiments demonstrate remarkable bias induction capabilities under label-efficient and one-epoch training settings.
Abstract:Occlusions between consecutive frames have long posed a significant challenge in optical flow estimation. The inherent ambiguity introduced by occlusions directly violates the brightness constancy constraint and considerably hinders pixel-to-pixel matching. To address this issue, multi-frame optical flow methods leverage adjacent frames to mitigate the local ambiguity. Nevertheless, prior multi-frame methods predominantly adopt recursive flow estimation, resulting in a considerable computational overlap. In contrast, we propose a streamlined in-batch framework that eliminates the need for extensive redundant recursive computations while concurrently developing effective spatio-temporal modeling approaches under in-batch estimation constraints. Specifically, we present a Streamlined In-batch Multi-frame (SIM) pipeline tailored to video input, attaining a similar level of time efficiency to two-frame networks. Furthermore, we introduce an efficient Integrative Spatio-temporal Coherence (ISC) modeling method for effective spatio-temporal modeling during the encoding phase, which introduces no additional parameter overhead. Additionally, we devise a Global Temporal Regressor (GTR) that effectively explores temporal relations during decoding. Benefiting from the efficient SIM pipeline and effective modules, StreamFlow not only excels in terms of performance on the challenging KITTI and Sintel datasets, with particular improvement in occluded areas but also attains a remarkable $63.82\%$ enhancement in speed compared with previous multi-frame methods. The code will be available soon at https://github.com/littlespray/StreamFlow.
Abstract:Large-scale image-language pretrained models, e.g., CLIP, have demonstrated remarkable proficiency in acquiring general multi-modal knowledge through web-scale image-text data. Despite the impressive performance of image-language models on various image tasks, how to effectively expand them on general video understanding remains an area of ongoing exploration. In this paper, we investigate the image-to-video transferring from the perspective of the model and the data, unveiling two key obstacles impeding the adaptation of image-language models: non-generalizable temporal modeling and partially misaligned video-text data. To address these challenges, we propose Spatial-Temporal Auxiliary Network with Mutual-guided alignment module (Mug-STAN), a simple yet effective framework extending image-text model to diverse video tasks and video-text data.Specifically, STAN adopts a branch structure with decomposed spatial-temporal modules to enable generalizable temporal modeling, while Mug suppresses misalignment by introducing token-wise feature aggregation of either modality from the other. Extensive experimental results verify Mug-STAN significantly improves adaptation of language-image pretrained models such as CLIP and CoCa at both video-text post-pretraining and finetuning stages. With our solution, state-of-the-art zero-shot and finetuning results on various downstream datasets, including MSR-VTT, DiDeMo, LSMDC, Kinetics-400, Something-Something-2, HMDB-51, UCF- 101, and AVA, are achieved. Moreover, by integrating pretrained Mug-STAN with the emerging multimodal dialogue model, we can realize zero-shot video chatting. Codes are available at https://github.com/farewellthree/STAN
Abstract:Image super-resolution (SR) aims to learn a mapping from low-resolution (LR) to high-resolution (HR) using paired HR-LR training images. Conventional SR methods typically gather the paired training data by synthesizing LR images from HR images using a predetermined degradation model, e.g., Bicubic down-sampling. However, the realistic degradation type of test images may mismatch with the training-time degradation type due to the dynamic changes of the real-world scenarios, resulting in inferior-quality SR images. To address this, existing methods attempt to estimate the degradation model and train an image-specific model, which, however, is quite time-consuming and impracticable to handle rapidly changing domain shifts. Moreover, these methods largely concentrate on the estimation of one degradation type (e.g., blur degradation), overlooking other degradation types like noise and JPEG in real-world test-time scenarios, thus limiting their practicality. To tackle these problems, we present an efficient test-time adaptation framework for SR, named SRTTA, which is able to quickly adapt SR models to test domains with different/unknown degradation types. Specifically, we design a second-order degradation scheme to construct paired data based on the degradation type of the test image, which is predicted by a pre-trained degradation classifier. Then, we adapt the SR model by implementing feature-level reconstruction learning from the initial test image to its second-order degraded counterparts, which helps the SR model generate plausible HR images. Extensive experiments are conducted on newly synthesized corrupted DIV2K datasets with 8 different degradations and several real-world datasets, demonstrating that our SRTTA framework achieves an impressive improvement over existing methods with satisfying speed. The source code is available at https://github.com/DengZeshuai/SRTTA.
Abstract:Learning to navigate to an image-specified goal is an important but challenging task for autonomous systems. The agent is required to reason the goal location from where a picture is shot. Existing methods try to solve this problem by learning a navigation policy, which captures semantic features of the goal image and observation image independently and lastly fuses them for predicting a sequence of navigation actions. However, these methods suffer from two major limitations. 1) They may miss detailed information in the goal image, and thus fail to reason the goal location. 2) More critically, it is hard to focus on the goal-relevant regions in the observation image, because they attempt to understand observation without goal conditioning. In this paper, we aim to overcome these limitations by designing a Fine-grained Goal Prompting (FGPrompt) method for image-goal navigation. In particular, we leverage fine-grained and high-resolution feature maps in the goal image as prompts to perform conditioned embedding, which preserves detailed information in the goal image and guides the observation encoder to pay attention to goal-relevant regions. Compared with existing methods on the image-goal navigation benchmark, our method brings significant performance improvement on 3 benchmark datasets (i.e., Gibson, MP3D, and HM3D). Especially on Gibson, we surpass the state-of-the-art success rate by 8% with only 1/50 model size. Project page: https://xinyusun.github.io/fgprompt-pages
Abstract:The recent progress in Large Language Models (LLM) has spurred various advancements in image-language conversation agents, while how to build a proficient video-based dialogue system is still under exploration. Considering the extensive scale of LLM and visual backbone, minimal GPU memory is left for facilitating effective temporal modeling, which is crucial for comprehending and providing feedback on videos. To this end, we propose Branching Temporal Adapter (BT-Adapter), a novel method for extending image-language pretrained models into the video domain. Specifically, BT-Adapter serves as a plug-and-use temporal modeling branch alongside the pretrained visual encoder, which is tuned while keeping the backbone frozen. Just pretrained once, BT-Adapter can be seamlessly integrated into all image conversation models using this version of CLIP, enabling video conversations without the need for video instructions. Besides, we develop a unique asymmetric token masking strategy inside the branch with tailor-made training tasks for BT-Adapter, facilitating faster convergence and better results. Thanks to BT-Adapter, we are able to empower existing multimodal dialogue models with strong video understanding capabilities without incurring excessive GPU costs. Without bells and whistles, BT-Adapter achieves (1) state-of-the-art zero-shot results on various video tasks using thousands of fewer GPU hours. (2) better performance than current video chatbots without any video instruction tuning. (3) state-of-the-art results of video chatting using video instruction tuning, outperforming previous SOTAs by a large margin.
Abstract:We study the task of zero-shot vision-and-language navigation (ZS-VLN), a practical yet challenging problem in which an agent learns to navigate following a path described by language instructions without requiring any path-instruction annotation data. Normally, the instructions have complex grammatical structures and often contain various action descriptions (e.g., "proceed beyond", "depart from"). How to correctly understand and execute these action demands is a critical problem, and the absence of annotated data makes it even more challenging. Note that a well-educated human being can easily understand path instructions without the need for any special training. In this paper, we propose an action-aware zero-shot VLN method ($A^2$Nav) by exploiting the vision-and-language ability of foundation models. Specifically, the proposed method consists of an instruction parser and an action-aware navigation policy. The instruction parser utilizes the advanced reasoning ability of large language models (e.g., GPT-3) to decompose complex navigation instructions into a sequence of action-specific object navigation sub-tasks. Each sub-task requires the agent to localize the object and navigate to a specific goal position according to the associated action demand. To accomplish these sub-tasks, an action-aware navigation policy is learned from freely collected action-specific datasets that reveal distinct characteristics of each action demand. We use the learned navigation policy for executing sub-tasks sequentially to follow the navigation instruction. Extensive experiments show $A^2$Nav achieves promising ZS-VLN performance and even surpasses the supervised learning methods on R2R-Habitat and RxR-Habitat datasets.
Abstract:Vision-and-language navigation (VLN) requires an embodied agent to navigate in realistic 3D environments using natural language instructions. Existing VLN methods suffer from training on small-scale environments or unreasonable path-instruction datasets, limiting the generalization to unseen environments. There are massive house tour videos on YouTube, providing abundant real navigation experiences and layout information. However, these videos have not been explored for VLN before. In this paper, we propose to learn an agent from these videos by creating a large-scale dataset which comprises reasonable path-instruction pairs from house tour videos and pre-training the agent on it. To achieve this, we have to tackle the challenges of automatically constructing path-instruction pairs and exploiting real layout knowledge from raw and unlabeled videos. To address these, we first leverage an entropy-based method to construct the nodes of a path trajectory. Then, we propose an action-aware generator for generating instructions from unlabeled trajectories. Last, we devise a trajectory judgment pretext task to encourage the agent to mine the layout knowledge. Experimental results show that our method achieves state-of-the-art performance on two popular benchmarks (R2R and REVERIE). Code is available at https://github.com/JeremyLinky/YouTube-VLN
Abstract:Zero-shot quantization (ZSQ) is promising for compressing and accelerating deep neural networks when the data for training full-precision models are inaccessible. In ZSQ, network quantization is performed using synthetic samples, thus, the performance of quantized models depends heavily on the quality of synthetic samples. Nonetheless, we find that the synthetic samples constructed in existing ZSQ methods can be easily fitted by models. Accordingly, quantized models obtained by these methods suffer from significant performance degradation on hard samples. To address this issue, we propose HArd sample Synthesizing and Training (HAST). Specifically, HAST pays more attention to hard samples when synthesizing samples and makes synthetic samples hard to fit when training quantized models. HAST aligns features extracted by full-precision and quantized models to ensure the similarity between features extracted by these two models. Extensive experiments show that HAST significantly outperforms existing ZSQ methods, achieving performance comparable to models that are quantized with real data.