Abstract:This paper studies the problem of learning message propagation strategies for graph neural networks (GNNs). One of the challenges for graph neural networks is that of defining the propagation strategy. For instance, the choices of propagation steps are often specialized to a single graph and are not personalized to different nodes. To compensate for this, in this paper, we present learning to propagate, a general learning framework that not only learns the GNN parameters for prediction but more importantly, can explicitly learn the interpretable and personalized propagate strategies for different nodes and various types of graphs. We introduce the optimal propagation steps as latent variables to help find the maximum-likelihood estimation of the GNN parameters in a variational Expectation-Maximization (VEM) framework. Extensive experiments on various types of graph benchmarks demonstrate that our proposed framework can significantly achieve better performance compared with the state-of-the-art methods, and can effectively learn personalized and interpretable propagate strategies of messages in GNNs.
Abstract:Modeling customer shopping intentions is a crucial task for e-commerce, as it directly impacts user experience and engagement. Thus, accurately understanding customer preferences is essential for providing personalized recommendations. Session-based recommendation, which utilizes customer session data to predict their next interaction, has become increasingly popular. However, existing session datasets have limitations in terms of item attributes, user diversity, and dataset scale. As a result, they cannot comprehensively capture the spectrum of user behaviors and preferences. To bridge this gap, we present the Amazon Multilingual Multi-locale Shopping Session Dataset, namely Amazon-M2. It is the first multilingual dataset consisting of millions of user sessions from six different locales, where the major languages of products are English, German, Japanese, French, Italian, and Spanish. Remarkably, the dataset can help us enhance personalization and understanding of user preferences, which can benefit various existing tasks as well as enable new tasks. To test the potential of the dataset, we introduce three tasks in this work: (1) next-product recommendation, (2) next-product recommendation with domain shifts, and (3) next-product title generation. With the above tasks, we benchmark a range of algorithms on our proposed dataset, drawing new insights for further research and practice. In addition, based on the proposed dataset and tasks, we hosted a competition in the KDD CUP 2023 and have attracted thousands of users and submissions. The winning solutions and the associated workshop can be accessed at our website https://kddcup23.github.io/.
Abstract:Graph neural networks have shown great ability in representation (GNNs) learning on graphs, facilitating various tasks. Despite their great performance in modeling graphs, recent works show that GNNs tend to inherit and amplify the bias from training data, causing concerns of the adoption of GNNs in high-stake scenarios. Hence, many efforts have been taken for fairness-aware GNNs. However, most existing fair GNNs learn fair node representations by adopting statistical fairness notions, which may fail to alleviate bias in the presence of statistical anomalies. Motivated by causal theory, there are several attempts utilizing graph counterfactual fairness to mitigate root causes of unfairness. However, these methods suffer from non-realistic counterfactuals obtained by perturbation or generation. In this paper, we take a causal view on fair graph learning problem. Guided by the casual analysis, we propose a novel framework CAF, which can select counterfactuals from training data to avoid non-realistic counterfactuals and adopt selected counterfactuals to learn fair node representations for node classification task. Extensive experiments on synthetic and real-world datasets show the effectiveness of CAF.
Abstract:In this technical survey, we comprehensively summarize the latest advancements in the field of recommender systems. The objective of this study is to provide an overview of the current state-of-the-art in the field and highlight the latest trends in the development of recommender systems. The study starts with a comprehensive summary of the main taxonomy of recommender systems, including personalized and group recommender systems, and then delves into the category of knowledge-based recommender systems. In addition, the survey analyzes the robustness, data bias, and fairness issues in recommender systems, summarizing the evaluation metrics used to assess the performance of these systems. Finally, the study provides insights into the latest trends in the development of recommender systems and highlights the new directions for future research in the field.
Abstract:Recommendation systems play a vital role in many online platforms, with their primary objective being to satisfy and retain users. As directly optimizing user retention is challenging, multiple evaluation metrics are often employed. Existing methods generally formulate the optimization of these evaluation metrics as a multitask learning problem, but often overlook the fact that user preferences for different tasks are personalized and change over time. Identifying and tracking the evolution of user preferences can lead to better user retention. To address this issue, we introduce the concept of "user lifecycle", consisting of multiple stages characterized by users' varying preferences for different tasks. We propose a novel Stage-Adaptive Network (STAN) framework for modeling user lifecycle stages. STAN first identifies latent user lifecycle stages based on learned user preferences, and then employs the stage representation to enhance multi-task learning performance. Our experimental results using both public and industrial datasets demonstrate that the proposed model significantly improves multi-task prediction performance compared to state-of-the-art methods, highlighting the importance of considering user lifecycle stages in recommendation systems. Furthermore, online A/B testing reveals that our model outperforms the existing model, achieving a significant improvement of 3.05% in staytime per user and 0.88% in CVR. These results indicate that our approach effectively improves the overall efficiency of the multi-task recommendation system.
Abstract:Graph Neural Networks (GNNs) have shown great power in various domains. However, their predictions may inherit societal biases on sensitive attributes, limiting their adoption in real-world applications. Although many efforts have been taken for fair GNNs, most existing works just adopt widely used fairness techniques in machine learning to graph domains and ignore or don't have a thorough understanding of the message passing mechanism with fairness constraints, which is a distinctive feature of GNNs. To fill the gap, we propose a novel fairness-aware message passing framework GMMD, which is derived from an optimization problem that considers both graph smoothness and representation fairness. GMMD can be intuitively interpreted as encouraging a node to aggregate representations of other nodes from different sensitive groups while subtracting representations of other nodes from the same sensitive group, resulting in fair representations. We also provide a theoretical analysis to justify that GMMD can guarantee fairness, which leads to a simpler and theory-guided variant GMMD-S. Extensive experiments on graph benchmarks show that our proposed framework can significantly improve the fairness of various backbone GNN models while maintaining high accuracy.
Abstract:Graph Neural Networks (GNNs) have achieved great success in modeling graph-structured data. However, recent works show that GNNs are vulnerable to adversarial attacks which can fool the GNN model to make desired predictions of the attacker. In addition, training data of GNNs can be leaked under membership inference attacks. This largely hinders the adoption of GNNs in high-stake domains such as e-commerce, finance and bioinformatics. Though investigations have been made in conducting robust predictions and protecting membership privacy, they generally fail to simultaneously consider the robustness and membership privacy. Therefore, in this work, we study a novel problem of developing robust and membership privacy-preserving GNNs. Our analysis shows that Information Bottleneck (IB) can help filter out noisy information and regularize the predictions on labeled samples, which can benefit robustness and membership privacy. However, structural noises and lack of labels in node classification challenge the deployment of IB on graph-structured data. To mitigate these issues, we propose a novel graph information bottleneck framework that can alleviate structural noises with neighbor bottleneck. Pseudo labels are also incorporated in the optimization to minimize the gap between the predictions on the labeled set and unlabeled set for membership privacy. Extensive experiments on real-world datasets demonstrate that our method can give robust predictions and simultaneously preserve membership privacy.
Abstract:Imitation learning has achieved great success in many sequential decision-making tasks, in which a neural agent is learned by imitating collected human demonstrations. However, existing algorithms typically require a large number of high-quality demonstrations that are difficult and expensive to collect. Usually, a trade-off needs to be made between demonstration quality and quantity in practice. Targeting this problem, in this work we consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set. Some pioneering works have been proposed, but they suffer from many limitations, e.g., assuming a demonstration to be of the same optimality throughout time steps and failing to provide any interpretation w.r.t knowledge learned from the noisy set. Addressing these problems, we propose {\method} by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills. Concretely, {\method} consists of a high-level controller to discover skills and a skill-conditioned module to capture action-taking policies, and is trained following a two-phase pipeline by first discovering skills with all demonstrations and then adapting the controller to only the clean set. A mutual-information-based regularization and a dynamic sub-demonstration optimality estimator are designed to promote disentanglement in the skill space. Extensive experiments are conducted over two gym environments and a real-world healthcare dataset to demonstrate the superiority of {\method} in learning from sub-optimal demonstrations and its improved interpretability by examining learned skills.
Abstract:Graph Neural Networks (GNNs) have achieved state-of-the-art performance for link prediction. However, GNNs suffer from poor interpretability, which limits their adoptions in critical scenarios that require knowing why certain links are predicted. Despite various methods proposed for the explainability of GNNs, most of them are post-hoc explainers developed for explaining node classification. Directly adopting existing post-hoc explainers for explaining link prediction is sub-optimal because: (i) post-hoc explainers usually adopt another strategy or model to explain a target model, which could misinterpret the target model; and (ii) GNN explainers for node classification identify crucial subgraphs around each node for the explanation; while for link prediction, one needs to explain the prediction for each pair of nodes based on graph structure and node attributes. Therefore, in this paper, we study a novel problem of self-explainable GNNs for link prediction, which can simultaneously give accurate predictions and explanations. Concretely, we propose a new framework and it can find various $K$ important neighbors of one node to learn pair-specific representations for links from this node to other nodes. These $K$ different neighbors represent important characteristics of the node and model various factors for links from it. Thus, $K$ neighbors can provide explanations for the existence of links. Experiments on both synthetic and real-world datasets verify the effectiveness of the proposed framework for link prediction and explanation.
Abstract:Graph-structured data are pervasive in the real-world such as social networks, molecular graphs and transaction networks. Graph neural networks (GNNs) have achieved great success in representation learning on graphs, facilitating various downstream tasks. However, GNNs have several drawbacks such as lacking interpretability, can easily inherit the bias of the training data and cannot model the casual relations. Recently, counterfactual learning on graphs has shown promising results in alleviating these drawbacks. Various graph counterfactual learning approaches have been proposed for counterfactual fairness, explainability, link prediction and other applications on graphs. To facilitate the development of this promising direction, in this survey, we categorize and comprehensively review papers on graph counterfactual learning. We divide existing methods into four categories based on research problems studied. For each category, we provide background and motivating examples, a general framework summarizing existing works and a detailed review of these works. We point out promising future research directions at the intersection of graph-structured data, counterfactual learning, and real-world applications. To offer a comprehensive view of resources for future studies, we compile a collection of open-source implementations, public datasets, and commonly-used evaluation metrics. This survey aims to serve as a ``one-stop-shop'' for building a unified understanding of graph counterfactual learning categories and current resources. We also maintain a repository for papers and resources and will keep updating the repository https://github.com/TimeLovercc/Awesome-Graph-Causal-Learning.