Abstract:Recent progress in Graph Neural Networks (GNNs) has greatly enhanced the ability to model complex molecular structures for predicting properties. Nevertheless, molecular data encompasses more than just graph structures, including textual and visual information that GNNs do not handle well. To bridge this gap, we present an innovative framework that utilizes multimodal molecular data to extract insights from Large Language Models (LLMs). We introduce GALLON (Graph Learning from Large Language Model Distillation), a framework that synergizes the capabilities of LLMs and GNNs by distilling multimodal knowledge into a unified Multilayer Perceptron (MLP). This method integrates the rich textual and visual data of molecules with the structural analysis power of GNNs. Extensive experiments reveal that our distilled MLP model notably improves the accuracy and efficiency of molecular property predictions.
Abstract:Graph Neural Networks (GNNs) have shown remarkable performance in various tasks. However, recent works reveal that GNNs are vulnerable to backdoor attacks. Generally, backdoor attack poisons the graph by attaching backdoor triggers and the target class label to a set of nodes in the training graph. A GNN trained on the poisoned graph will then be misled to predict test nodes attached with trigger to the target class. Despite their effectiveness, our empirical analysis shows that triggers generated by existing methods tend to be out-of-distribution (OOD), which significantly differ from the clean data. Hence, these injected triggers can be easily detected and pruned with widely used outlier detection methods in real-world applications. Therefore, in this paper, we study a novel problem of unnoticeable graph backdoor attacks with in-distribution (ID) triggers. To generate ID triggers, we introduce an OOD detector in conjunction with an adversarial learning strategy to generate the attributes of the triggers within distribution. To ensure a high attack success rate with ID triggers, we introduce novel modules designed to enhance trigger memorization by the victim model trained on poisoned graph. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed method in generating in distribution triggers that can by-pass various defense strategies while maintaining a high attack success rate.
Abstract:Large language models (LLMs), while exhibiting exceptional performance, suffer from hallucinations, especially on knowledge-intensive tasks. Existing works propose to augment LLMs with individual text units retrieved from external knowledge corpora to alleviate the issue. However, in many domains, texts are interconnected (e.g., academic papers in a bibliographic graph are linked by citations and co-authorships) which form a (text-attributed) graph. The knowledge in such graphs is encoded not only in single texts/nodes but also in their associated connections. To facilitate the research of augmenting LLMs with graphs, we manually construct a Graph Reasoning Benchmark dataset called GRBench, containing 1,740 questions that can be answered with the knowledge from 10 domain graphs. Then, we propose a simple and effective framework called Graph Chain-of-thought (Graph-CoT) to augment LLMs with graphs by encouraging LLMs to reason on the graph iteratively. Each Graph-CoT iteration consists of three sub-steps: LLM reasoning, LLM-graph interaction, and graph execution. We conduct systematic experiments with three LLM backbones on GRBench, where Graph-CoT outperforms the baselines consistently. The code is available at https://github.com/PeterGriffinJin/Graph-CoT.
Abstract:Developing a universal model that can effectively harness heterogeneous resources and respond to a wide range of personalized needs has been a longstanding community aspiration. Our daily choices, especially in domains like fashion and retail, are substantially shaped by multi-modal data, such as pictures and textual descriptions. These modalities not only offer intuitive guidance but also cater to personalized user preferences. However, the predominant personalization approaches mainly focus on the ID or text-based recommendation problem, failing to comprehend the information spanning various tasks or modalities. In this paper, our goal is to establish a Unified paradigm for Multi-modal Personalization systems (UniMP), which effectively leverages multi-modal data while eliminating the complexities associated with task- and modality-specific customization. We argue that the advancements in foundational generative modeling have provided the flexibility and effectiveness necessary to achieve the objective. In light of this, we develop a generic and extensible personalization generative framework, that can handle a wide range of personalized needs including item recommendation, product search, preference prediction, explanation generation, and further user-guided image generation. Our methodology enhances the capabilities of foundational language models for personalized tasks by seamlessly ingesting interleaved cross-modal user history information, ensuring a more precise and customized experience for users. To train and evaluate the proposed multi-modal personalized tasks, we also introduce a novel and comprehensive benchmark covering a variety of user requirements. Our experiments on the real-world benchmark showcase the model's potential, outperforming competitive methods specialized for each task.
Abstract:Fair graph learning plays a pivotal role in numerous practical applications. Recently, many fair graph learning methods have been proposed; however, their evaluation often relies on poorly constructed semi-synthetic datasets or substandard real-world datasets. In such cases, even a basic Multilayer Perceptron (MLP) can outperform Graph Neural Networks (GNNs) in both utility and fairness. In this work, we illustrate that many datasets fail to provide meaningful information in the edges, which may challenge the necessity of using graph structures in these problems. To address these issues, we develop and introduce a collection of synthetic, semi-synthetic, and real-world datasets that fulfill a broad spectrum of requirements. These datasets are thoughtfully designed to include relevant graph structures and bias information crucial for the fair evaluation of models. The proposed synthetic and semi-synthetic datasets offer the flexibility to create data with controllable bias parameters, thereby enabling the generation of desired datasets with user-defined bias values with ease. Moreover, we conduct systematic evaluations of these proposed datasets and establish a unified evaluation approach for fair graph learning models. Our extensive experimental results with fair graph learning methods across our datasets demonstrate their effectiveness in benchmarking the performance of these methods. Our datasets and the code for reproducing our experiments are available at https://github.com/XweiQ/Benchmark-GraphFairness.
Abstract:E-commerce platforms typically store and structure product information and search data in a hierarchy. Efficiently categorizing user search queries into a similar hierarchical structure is paramount in enhancing user experience on e-commerce platforms as well as news curation and academic research. The significance of this task is amplified when dealing with sensitive query categorization or critical information dissemination, where inaccuracies can lead to considerable negative impacts. The inherent complexity of hierarchical query classification is compounded by two primary challenges: (1) the pronounced class imbalance that skews towards dominant categories, and (2) the inherent brevity and ambiguity of search queries that hinder accurate classification. To address these challenges, we introduce a novel framework that leverages hierarchical information through (i) enhanced representation learning that utilizes the contrastive loss to discern fine-grained instance relationships within the hierarchy, called ''instance hierarchy'', and (ii) a nuanced hierarchical classification loss that attends to the intrinsic label taxonomy, named ''label hierarchy''. Additionally, based on our observation that certain unlabeled queries share typographical similarities with labeled queries, we propose a neighborhood-aware sampling technique to intelligently select these unlabeled queries to boost the classification performance. Extensive experiments demonstrate that our proposed method is better than state-of-the-art (SOTA) on the proprietary Amazon dataset, and comparable to SOTA on the public datasets of Web of Science and RCV1-V2. These results underscore the efficacy of our proposed solution, and pave the path toward the next generation of hierarchy-aware query classification systems.
Abstract:The rise of self-supervised learning, which operates without the need for labeled data, has garnered significant interest within the graph learning community. This enthusiasm has led to the development of numerous Graph Contrastive Learning (GCL) techniques, all aiming to create a versatile graph encoder that leverages the wealth of unlabeled data for various downstream tasks. However, the current evaluation standards for GCL approaches are flawed due to the need for extensive hyper-parameter tuning during pre-training and the reliance on a single downstream task for assessment. These flaws can skew the evaluation away from the intended goals, potentially leading to misleading conclusions. In our paper, we thoroughly examine these shortcomings and offer fresh perspectives on how GCL methods are affected by hyper-parameter choices and the choice of downstream tasks for their evaluation. Additionally, we introduce an enhanced evaluation framework designed to more accurately gauge the effectiveness, consistency, and overall capability of GCL methods.
Abstract:Though Large Language Models (LLMs) have shown remarkable open-generation capabilities across diverse domains, they struggle with knowledge-intensive tasks. To alleviate this issue, knowledge integration methods have been proposed to enhance LLMs with domain-specific knowledge graphs using external modules. However, they suffer from data inefficiency as they require both known and unknown knowledge for fine-tuning. Thus, we study a novel problem of integrating unknown knowledge into LLMs efficiently without unnecessary overlap of known knowledge. Injecting new knowledge poses the risk of forgetting previously acquired knowledge. To tackle this, we propose a novel Infuser-Guided Knowledge Integration (InfuserKI) framework that utilizes transformer internal states to determine whether to enhance the original LLM output with additional information, thereby effectively mitigating knowledge forgetting. Evaluations on the UMLS-2.5k and MetaQA domain knowledge graphs demonstrate that InfuserKI can effectively acquire new knowledge and outperform state-of-the-art baselines by 9% and 6%, respectively, in reducing knowledge forgetting.
Abstract:Text-to-Image (T2I) models have shown great performance in generating images based on textual prompts. However, these models are vulnerable to unsafe input to generate unsafe content like sexual, harassment and illegal-activity images. Existing studies based on image checker, model fine-tuning and embedding blocking are impractical in real-world applications. Hence, \textit{we propose the first universal prompt optimizer for safe T2I generation in black-box scenario}. We first construct a dataset consisting of toxic-clean prompt pairs by GPT-3.5 Turbo. To guide the optimizer to have the ability of converting toxic prompt to clean prompt while preserving semantic information, we design a novel reward function measuring toxicity and text alignment of generated images and train the optimizer through Proximal Policy Optimization. Experiments show that our approach can effectively reduce the likelihood of various T2I models in generating inappropriate images, with no significant impact on text alignment. It is also flexible to be combined with methods to achieve better performance.
Abstract:Graph Neural Networks (GNNs) have demonstrated significant success in learning from graph-structured data across various domains. Despite their great successful, one critical challenge is often overlooked by existing works, i.e., the learning of message propagation that can generalize effectively to underrepresented graph regions. These minority regions often exhibit irregular homophily/heterophily patterns and diverse neighborhood class distributions, resulting in ambiguity. In this work, we investigate the ambiguity problem within GNNs, its impact on representation learning, and the development of richer supervision signals to fight against this problem. We conduct a fine-grained evaluation of GNN, analyzing the existence of ambiguity in different graph regions and its relation with node positions. To disambiguate node embeddings, we propose a novel method, {\method}, which exploits additional optimization guidance to enhance representation learning, particularly for nodes in ambiguous regions. {\method} identifies ambiguous nodes based on temporal inconsistency of predictions and introduces a disambiguation regularization by employing contrastive learning in a topology-aware manner. {\method} promotes discriminativity of node representations and can alleviating semantic mixing caused by message propagation, effectively addressing the ambiguity problem. Empirical results validate the efficiency of {\method} and highlight its potential to improve GNN performance in underrepresented graph regions.