Abstract:Text spotting for industrial panels is a key task for intelligent monitoring. However, achieving efficient and accurate text spotting for complex industrial panels remains challenging due to issues such as cross-scale localization and ambiguous boundaries in dense text regions. Moreover, most existing methods primarily focus on representing a single text shape, neglecting a comprehensive exploration of multi-scale feature information across different texts. To address these issues, this work proposes a novel multi-scale dense text spotter for edge AI-based vision system (EdgeSpotter) to achieve accurate and robust industrial panel monitoring. Specifically, a novel Transformer with efficient mixer is developed to learn the interdependencies among multi-level features, integrating multi-layer spatial and semantic cues. In addition, a new feature sampling with catmull-rom splines is designed, which explicitly encodes the shape, position, and semantic information of text, thereby alleviating missed detections and reducing recognition errors caused by multi-scale or dense text regions. Furthermore, a new benchmark dataset for industrial panel monitoring (IPM) is constructed. Extensive qualitative and quantitative evaluations on this challenging benchmark dataset validate the superior performance of the proposed method in different challenging panel monitoring tasks. Finally, practical tests based on the self-designed edge AI-based vision system demonstrate the practicality of the method. The code and demo will be available at https://github.com/vision4robotics/EdgeSpotter.
Abstract:Computer-aided design (CAD) is a way to digitally create 2D drawings and 3D models of real-world products. Traditional CAD typically relies on hand-drawing by experts or modifications of existing library files, which doesn't allow for rapid personalization. With the emergence of generative artificial intelligence, convenient and efficient personalized CAD generation has become possible. However, existing generative methods typically produce outputs that lack interactive editability and geometric annotations, limiting their practical applications in manufacturing. To enable interactive generative CAD, we propose CAD-Coder, a framework that transforms natural language instructions into CAD script codes, which can be executed in Python environments to generate human-editable CAD files (.Dxf). To facilitate the generation of editable CAD sketches with annotation information, we construct a comprehensive dataset comprising 29,130 Dxf files with their corresponding script codes, where each sketch preserves both editability and geometric annotations. We evaluate CAD-Coder on various 2D/3D CAD generation tasks against existing methods, demonstrating superior interactive capabilities while uniquely providing editable sketches with geometric annotations.
Abstract:Smart contracts, closely intertwined with cryptocurrency transactions, have sparked widespread concerns about considerable financial losses of security issues. To counteract this, a variety of tools have been developed to identify vulnerability in smart contract. However, they fail to overcome two challenges at the same time when faced with smart contract bytecode: (i) strong interference caused by enormous non-relevant instructions; (ii) missing semantics of bytecode due to incomplete data and control flow dependencies. In this paper, we propose a multi-teacher based bytecode vulnerability detection method, namely Multi-Teacher Vulnerability Hunter (MTVHunter), which delivers effective denoising and missing semantic to bytecode under multi-teacher guidance. Specifically, we first propose an instruction denoising teacher to eliminate noise interference by abstract vulnerability pattern and further reflect in contract embeddings. Secondly, we design a novel semantic complementary teacher with neuron distillation, which effectively extracts necessary semantic from source code to replenish the bytecode. Particularly, the proposed neuron distillation accelerate this semantic filling by turning the knowledge transition into a regression task. We conduct experiments on 229,178 real-world smart contracts that concerns four types of common vulnerabilities. Extensive experiments show MTVHunter achieves significantly performance gains over state-of-the-art approaches.