Abstract:Cross-domain recommendation (CDR) aims to address the data-sparsity problem by transferring knowledge across domains. Existing CDR methods generally assume that the user-item interaction data is shareable between domains, which leads to privacy leakage. Recently, some privacy-preserving CDR (PPCDR) models have been proposed to solve this problem. However, they primarily transfer simple representations learned only from user-item interaction histories, overlooking other useful side information, leading to inaccurate user preferences. Additionally, they transfer differentially private user-item interaction matrices or embeddings across domains to protect privacy. However, these methods offer limited privacy protection, as attackers may exploit external information to infer the original data. To address these challenges, we propose a novel Federated User Preference Modeling (FUPM) framework. In FUPM, first, a novel comprehensive preference exploration module is proposed to learn users' comprehensive preferences from both interaction data and additional data including review texts and potentially positive items. Next, a private preference transfer module is designed to first learn differentially private local and global prototypes, and then privately transfer the global prototypes using a federated learning strategy. These prototypes are generalized representations of user groups, making it difficult for attackers to infer individual information. Extensive experiments on four CDR tasks conducted on the Amazon and Douban datasets validate the superiority of FUPM over SOTA baselines. Code is available at https://github.com/Lili1013/FUPM.
Abstract:Automatic Chinese patent approval prediction is an emerging and valuable task in patent analysis. However, it involves a rigorous and transparent decision-making process that includes patent comparison and examination to assess its innovation and correctness. This resultant necessity of decision evidentiality, coupled with intricate patent comprehension presents significant challenges and obstacles for the patent analysis community. Consequently, few existing studies are addressing this task. This paper presents the pioneering effort on this task using a retrieval-based classification approach. We propose a novel framework called DiSPat, which focuses on structural representation learning and disentanglement to predict the approval of Chinese patents and offer decision-making evidence. DiSPat comprises three main components: base reference retrieval to retrieve the Top-k most similar patents as a reference base; structural patent representation to exploit the inherent claim hierarchy in patents for learning a structural patent representation; disentangled representation learning to learn disentangled patent representations that enable the establishment of an evidential decision-making process. To ensure a thorough evaluation, we have meticulously constructed three datasets of Chinese patents. Extensive experiments on these datasets unequivocally demonstrate our DiSPat surpasses state-of-the-art baselines on patent approval prediction, while also exhibiting enhanced evidentiality.
Abstract:The non-stationary nature of real-world Multivariate Time Series (MTS) data presents forecasting models with a formidable challenge of the time-variant distribution of time series, referred to as distribution shift. Existing studies on the distribution shift mostly adhere to adaptive normalization techniques for alleviating temporal mean and covariance shifts or time-variant modeling for capturing temporal shifts. Despite improving model generalization, these normalization-based methods often assume a time-invariant transition between outputs and inputs but disregard specific intra-/inter-series correlations, while time-variant models overlook the intrinsic causes of the distribution shift. This limits model expressiveness and interpretability of tackling the distribution shift for MTS forecasting. To mitigate such a dilemma, we present a unified Probabilistic Graphical Model to Jointly capturing intra-/inter-series correlations and modeling the time-variant transitional distribution, and instantiate a neural framework called JointPGM for non-stationary MTS forecasting. Specifically, JointPGM first employs multiple Fourier basis functions to learn dynamic time factors and designs two distinct learners: intra-series and inter-series learners. The intra-series learner effectively captures temporal dynamics by utilizing temporal gates, while the inter-series learner explicitly models spatial dynamics through multi-hop propagation, incorporating Gumbel-softmax sampling. These two types of series dynamics are subsequently fused into a latent variable, which is inversely employed to infer time factors, generate final prediction, and perform reconstruction. We validate the effectiveness and efficiency of JointPGM through extensive experiments on six highly non-stationary MTS datasets, achieving state-of-the-art forecasting performance of MTS forecasting.
Abstract:The recent advancements in generative AI models, which can create realistic and human-like content, are significantly transforming how people communicate, create, and work. While the appropriate use of generative AI models can benefit the society, their misuse poses significant threats to data reliability and authentication. However, due to a lack of aligned multimodal datasets, effective and robust methods for detecting machine-generated content are still in the early stages of development. In this paper, we introduce RU-AI, a new large-scale multimodal dataset designed for the robust and efficient detection of machine-generated content in text, image, and voice. Our dataset is constructed from three large publicly available datasets: Flickr8K, COCO, and Places205, by combining the original datasets and their corresponding machine-generated pairs. Additionally, experimental results show that our proposed unified model, which incorporates a multimodal embedding module with a multilayer perceptron network, can effectively determine the origin of the data (i.e., original data samples or machine-generated ones) from RU-AI. However, future work is still required to address the remaining challenges posed by RU-AI. The source code and dataset are available at https://github.com/ZhihaoZhang97/RU-AI.
Abstract:Sequential recommender systems (SRS) are designed to predict users' future behaviors based on their historical interaction data. Recent research has increasingly utilized contrastive learning (CL) to leverage unsupervised signals to alleviate the data sparsity issue in SRS. In general, CL-based SRS first augments the raw sequential interaction data by using data augmentation strategies and employs a contrastive training scheme to enforce the representations of those sequences from the same raw interaction data to be similar. Despite the growing popularity of CL, data augmentation, as a basic component of CL, has not received sufficient attention. This raises the question: Is it possible to achieve superior recommendation results solely through data augmentation? To answer this question, we benchmark eight widely used data augmentation strategies, as well as state-of-the-art CL-based SRS methods, on four real-world datasets under both warm- and cold-start settings. Intriguingly, the conclusion drawn from our study is that, certain data augmentation strategies can achieve similar or even superior performance compared with some CL-based methods, demonstrating the potential to significantly alleviate the data sparsity issue with fewer computational overhead. We hope that our study can further inspire more fundamental studies on the key functional components of complex CL techniques. Our processed datasets and codes are available at https://github.com/AIM-SE/DA4Rec.
Abstract:The proliferation of social media platforms has fueled the rapid dissemination of fake news, posing threats to our real-life society. Existing methods use multimodal data or contextual information to enhance the detection of fake news by analyzing news content and/or its social context. However, these methods often overlook essential textual news content (articles) and heavily rely on sequential modeling and global attention to extract semantic information. These existing methods fail to handle the complex, subtle twists in news articles, such as syntax-semantics mismatches and prior biases, leading to lower performance and potential failure when modalities or social context are missing. To bridge these significant gaps, we propose a novel multi-hop syntax aware fake news detection (MSynFD) method, which incorporates complementary syntax information to deal with subtle twists in fake news. Specifically, we introduce a syntactical dependency graph and design a multi-hop subgraph aggregation mechanism to capture multi-hop syntax. It extends the effect of word perception, leading to effective noise filtering and adjacent relation enhancement. Subsequently, a sequential relative position-aware Transformer is designed to capture the sequential information, together with an elaborate keyword debiasing module to mitigate the prior bias. Extensive experimental results on two public benchmark datasets verify the effectiveness and superior performance of our proposed MSynFD over state-of-the-art detection models.
Abstract:Recommender Systems (RS) have significantly advanced online content discovery and personalized decision-making. However, emerging vulnerabilities in RS have catalyzed a paradigm shift towards Trustworthy RS (TRS). Despite numerous progress on TRS, most of them focus on data correlations while overlooking the fundamental causal nature in recommendation. This drawback hinders TRS from identifying the cause in addressing trustworthiness issues, leading to limited fairness, robustness, and explainability. To bridge this gap, causal learning emerges as a class of promising methods to augment TRS. These methods, grounded in reliable causality, excel in mitigating various biases and noises while offering insightful explanations for TRS. However, there lacks a timely survey in this vibrant area. This paper creates an overview of TRS from the perspective of causal learning. We begin by presenting the advantages and common procedures of Causality-oriented TRS (CTRS). Then, we identify potential trustworthiness challenges at each stage and link them to viable causal solutions, followed by a classification of CTRS methods. Finally, we discuss several future directions for advancing this field.
Abstract:Next Basket Recommender Systems (NBRs) function to recommend the subsequent shopping baskets for users through the modeling of their preferences derived from purchase history, typically manifested as a sequence of historical baskets. Given their widespread applicability in the E-commerce industry, investigations into NBRs have garnered increased attention in recent years. Despite the proliferation of diverse NBR methodologies, a substantial challenge lies in the absence of a systematic and unified evaluation framework across these methodologies. Various studies frequently appraise NBR approaches using disparate datasets and diverse experimental settings, impeding a fair and effective comparative assessment of methodological performance. To bridge this gap, this study undertakes a systematic empirical inquiry into NBRs, reviewing seminal works within the domain and scrutinizing their respective merits and drawbacks. Subsequently, we implement designated NBR algorithms on uniform datasets, employing consistent experimental configurations, and assess their performances via identical metrics. This methodological rigor establishes a cohesive framework for the impartial evaluation of diverse NBR approaches. It is anticipated that this study will furnish a robust foundation and serve as a pivotal reference for forthcoming research endeavors in this dynamic field.
Abstract:Time series forecasting has played the key role in different industrial, including finance, traffic, energy, and healthcare domains. While existing literatures have designed many sophisticated architectures based on RNNs, GNNs, or Transformers, another kind of approaches based on multi-layer perceptrons (MLPs) are proposed with simple structure, low complexity, and {superior performance}. However, most MLP-based forecasting methods suffer from the point-wise mappings and information bottleneck, which largely hinders the forecasting performance. To overcome this problem, we explore a novel direction of applying MLPs in the frequency domain for time series forecasting. We investigate the learned patterns of frequency-domain MLPs and discover their two inherent characteristic benefiting forecasting, (i) global view: frequency spectrum makes MLPs own a complete view for signals and learn global dependencies more easily, and (ii) energy compaction: frequency-domain MLPs concentrate on smaller key part of frequency components with compact signal energy. Then, we propose FreTS, a simple yet effective architecture built upon Frequency-domain MLPs for Time Series forecasting. FreTS mainly involves two stages, (i) Domain Conversion, that transforms time-domain signals into complex numbers of frequency domain; (ii) Frequency Learning, that performs our redesigned MLPs for the learning of real and imaginary part of frequency components. The above stages operated on both inter-series and intra-series scales further contribute to channel-wise and time-wise dependency learning. Extensive experiments on 13 real-world benchmarks (including 7 benchmarks for short-term forecasting and 6 benchmarks for long-term forecasting) demonstrate our consistent superiority over state-of-the-art methods.
Abstract:Recently, the fast development of Large Language Models (LLMs) such as ChatGPT has significantly advanced NLP tasks by enhancing the capabilities of conversational models. However, the application of LLMs in the recommendation domain has not been thoroughly investigated. To bridge this gap, we propose LLMRec, a LLM-based recommender system designed for benchmarking LLMs on various recommendation tasks. Specifically, we benchmark several popular off-the-shelf LLMs, such as ChatGPT, LLaMA, ChatGLM, on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization. Furthermore, we investigate the effectiveness of supervised finetuning to improve LLMs' instruction compliance ability. The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation. However, they demonstrated comparable performance to state-of-the-art methods in explainability-based tasks. We also conduct qualitative evaluations to further evaluate the quality of contents generated by different models, and the results show that LLMs can truly understand the provided information and generate clearer and more reasonable results. We aspire that this benchmark will serve as an inspiration for researchers to delve deeper into the potential of LLMs in enhancing recommendation performance. Our codes, processed data and benchmark results are available at https://github.com/williamliujl/LLMRec.