Abstract:The alignment of large language models (LLMs) with human values and intentions represents a core challenge in current AI research, where reward mechanism design has become a critical factor in shaping model behavior. This study conducts a comprehensive investigation of reward mechanisms in LLM alignment through a systematic theoretical framework, categorizing their development into three key phases: (1) feedback (diagnosis), (2) reward design (prescription), and (3) optimization (treatment). Through a four-dimensional analysis encompassing construction basis, format, expression, and granularity, this research establishes a systematic classification framework that reveals evolutionary trends in reward modeling. The field of LLM alignment faces several persistent challenges, while recent advances in reward design are driving significant paradigm shifts. Notable developments include the transition from reinforcement learning-based frameworks to novel optimization paradigms, as well as enhanced capabilities to address complex alignment scenarios involving multimodal integration and concurrent task coordination. Finally, this survey outlines promising future research directions for LLM alignment through innovative reward design strategies.
Abstract:The global optimization of classification trees has demonstrated considerable promise, notably in enhancing accuracy, optimizing size, and thereby improving human comprehensibility. While existing optimal classification trees substantially enhance accuracy over greedy-based tree models like CART, they still fall short when compared to the more complex black-box models, such as random forests. To bridge this gap, we introduce a new mixed-integer programming (MIP) formulation, grounded in multivariate Boolean rules, to derive the optimal classification tree. Our methodology integrates both linear metrics, including accuracy, balanced accuracy, and cost-sensitive cost, as well as nonlinear metrics such as the F1-score. The approach is implemented in an open-source Python package named BooleanOCT. We comprehensively benchmark these methods on the 36 datasets from the UCI machine learning repository. The proposed models demonstrate practical solvability on real-world datasets, effectively handling sizes in the tens of thousands. Aiming to maximize accuracy, this model achieves an average absolute improvement of 3.1\% and 1.5\% over random forests in small-scale and medium-sized datasets, respectively. Experiments targeting various objectives, including balanced accuracy, cost-sensitive cost, and F1-score, demonstrate the framework's wide applicability and its superiority over contemporary state-of-the-art optimal classification tree methods in small to medium-scale datasets.