Abstract:The standard post-training recipe for large reasoning models, supervised fine-tuning followed by reinforcement learning (SFT-then-RL), may limit the benefits of the RL stage: while SFT imitates expert demonstrations, it often causes overconfidence and reduces generation diversity, leaving RL with a narrowed solution space to explore. Adding entropy regularization during SFT is not a cure-all; it tends to flatten token distributions toward uniformity, increasing entropy without improving meaningful exploration capability. In this paper, we propose CurioSFT, an entropy-preserving SFT method designed to enhance exploration capabilities through intrinsic curiosity. It consists of (a) Self-Exploratory Distillation, which distills the model toward a self-generated, temperature-scaled teacher to encourage exploration within its capability; and (b) Entropy-Guided Temperature Selection, which adaptively adjusts distillation strength to mitigate knowledge forgetting by amplifying exploration at reasoning tokens while stabilizing factual tokens. Extensive experiments on mathematical reasoning tasks demonstrate that, in SFT stage, CurioSFT outperforms the vanilla SFT by 2.5 points on in-distribution tasks and 2.9 points on out-of-distribution tasks. We also verify that exploration capabilities preserved during SFT successfully translate into concrete gains in RL stage, yielding an average improvement of 5.0 points.
Abstract:In recommendation systems, new items are continuously introduced, initially lacking interaction records but gradually accumulating them over time. Accurately predicting the click-through rate (CTR) for these items is crucial for enhancing both revenue and user experience. While existing methods focus on enhancing item ID embeddings for new items within general CTR models, they tend to adopt a global feature interaction approach, often overshadowing new items with sparse data by those with abundant interactions. Addressing this, our work introduces EmerG, a novel approach that warms up cold-start CTR prediction by learning item-specific feature interaction patterns. EmerG utilizes hypernetworks to generate an item-specific feature graph based on item characteristics, which is then processed by a Graph Neural Network (GNN). This GNN is specially tailored to provably capture feature interactions at any order through a customized message passing mechanism. We further design a meta learning strategy that optimizes parameters of hypernetworks and GNN across various item CTR prediction tasks, while only adjusting a minimal set of item-specific parameters within each task. This strategy effectively reduces the risk of overfitting when dealing with limited data. Extensive experiments on benchmark datasets validate that EmerG consistently performs the best given no, a few and sufficient instances of new items.