Abstract:We explore the connection between Plug-and-Play (PnP) methods and Denoising Diffusion Implicit Models (DDIM) for solving ill-posed inverse problems, with a focus on single-pixel imaging. We begin by identifying key distinctions between PnP and diffusion models-particularly in their denoising mechanisms and sampling procedures. By decoupling the diffusion process into three interpretable stages: denoising, data consistency enforcement, and sampling, we provide a unified framework that integrates learned priors with physical forward models in a principled manner. Building upon this insight, we propose a hybrid data-consistency module that linearly combines multiple PnP-style fidelity terms. This hybrid correction is applied directly to the denoised estimate, improving measurement consistency without disrupting the diffusion sampling trajectory. Experimental results on single-pixel imaging tasks demonstrate that our method achieves better reconstruction quality.
Abstract:Computer-generated holography (CGH) is a promising technology for next-generation displays. However, generating high-speed, high-quality holographic video requires both high frame rate display and efficient computation, but is constrained by two key limitations: ($i$) Learning-based models often produce over-smoothed phases with narrow angular spectra, causing severe color crosstalk in high frame rate full-color displays such as depth-division multiplexing and thus resulting in a trade-off between frame rate and color fidelity. ($ii$) Existing frame-by-frame optimization methods typically optimize frames independently, neglecting spatial-temporal correlations between consecutive frames and leading to computationally inefficient solutions. To overcome these challenges, in this paper, we propose a novel high-speed full-color video CGH generation scheme. First, we introduce Spectrum-Guided Depth Division Multiplexing (SGDDM), which optimizes phase distributions via frequency modulation, enabling high-fidelity full-color display at high frame rates. Second, we present HoloMamba, a lightweight asymmetric Mamba-Unet architecture that explicitly models spatial-temporal correlations across video sequences to enhance reconstruction quality and computational efficiency. Extensive simulated and real-world experiments demonstrate that SGDDM achieves high-fidelity full-color display without compromise in frame rate, while HoloMamba generates FHD (1080p) full-color holographic video at over 260 FPS, more than 2.6$\times$ faster than the prior state-of-the-art Divide-Conquer-and-Merge Strategy.
Abstract:Large Language Models (LLMs) have achieved impressive accomplishments in recent years. However, the increasing memory consumption of KV cache has possessed a significant challenge to the inference system. Eviction methods have revealed the inherent redundancy within the KV cache, demonstrating its potential for reduction, particularly in deeper layers. However, KV cache reduction for shallower layers has been found to be insufficient. Based on our observation that, the KV cache exhibits a high degree of similarity. Based on this observation, we proposed a novel KV cache reduction method, SpindleKV, which balances both shallow and deep layers. For deep layers, we employ an attention weight based eviction method, while for shallow layers, we apply a codebook based replacement approach which is learnt by similarity and merging policy. Moreover, SpindleKV addressed the Grouped-Query Attention (GQA) dilemma faced by other attention based eviction methods. Experiments on two common benchmarks with three different LLMs shown that SpindleKV obtained better KV cache reduction effect compared to baseline methods, while preserving similar or even better model performance.
Abstract:In-context learning (ICL) has emerged as a powerful paradigm for task adaptation in large language models (LLMs), where models infer underlying task structures from a few demonstrations. However, ICL remains susceptible to biases that arise from prior knowledge and contextual demonstrations, which can degrade the performance of LLMs. Existing bias calibration methods typically apply fixed class priors across all inputs, limiting their efficacy in dynamic ICL settings where the context for each query differs. To address these limitations, we adopt implicit sequential Bayesian inference as a framework for interpreting ICL, identify "surprise" as an informative signal for class prior shift, and introduce a novel method--Surprise Calibration (SC). SC leverages the notion of surprise to capture the temporal dynamics of class priors, providing a more adaptive and computationally efficient solution for in-context learning. We empirically demonstrate the superiority of SC over existing bias calibration techniques across a range of benchmark natural language processing tasks.
Abstract:Image deblurring plays a crucial role in enhancing visual clarity across various applications. Although most deep learning approaches primarily focus on sRGB images, which inherently lose critical information during the image signal processing pipeline, RAW images, being unprocessed and linear, possess superior restoration potential but remain underexplored. Deblurring RAW images presents unique challenges, particularly in handling frequency-dependent blur while maintaining computational efficiency. To address these issues, we propose Frequency Enhanced Network (FrENet), a framework specifically designed for RAW-to-RAW deblurring that operates directly in the frequency domain. We introduce a novel Adaptive Frequency Positional Modulation module, which dynamically adjusts frequency components according to their spectral positions, thereby enabling precise control over the deblurring process. Additionally, frequency domain skip connections are adopted to further preserve high-frequency details. Experimental results demonstrate that FrENet surpasses state-of-the-art deblurring methods in RAW image deblurring, achieving significantly better restoration quality while maintaining high efficiency in terms of reduced MACs. Furthermore, FrENet's adaptability enables it to be extended to sRGB images, where it delivers comparable or superior performance compared to methods specifically designed for sRGB data. The code will be available at https://github.com/WenlongJiao/FrENet .
Abstract:Deep-unrolling and plug-and-play (PnP) approaches have become the de-facto standard solvers for single-pixel imaging (SPI) inverse problem. PnP approaches, a class of iterative algorithms where regularization is implicitly performed by an off-the-shelf deep denoiser, are flexible for varying compression ratios (CRs) but are limited in reconstruction accuracy and speed. Conversely, unrolling approaches, a class of multi-stage neural networks where a truncated iterative optimization process is transformed into an end-to-end trainable network, typically achieve better accuracy with faster inference but require fine-tuning or even retraining when CR changes. In this paper, we address the challenge of integrating the strengths of both classes of solvers. To this end, we design an efficient deep image restorer (DIR) for the unrolling of HQS (half quadratic splitting) and ADMM (alternating direction method of multipliers). More importantly, a general proximal trajectory (PT) loss function is proposed to train HQS/ADMM-unrolling networks such that learned DIR approximates the proximal operator of an ideal explicit restoration regularizer. Extensive experiments demonstrate that, the resulting proximal unrolling networks can not only flexibly handle varying CRs with a single model like PnP algorithms, but also outperform previous CR-specific unrolling networks in both reconstruction accuracy and speed. Source codes and models are available at https://github.com/pwangcs/ProxUnroll.
Abstract:Sparse Mixture of Experts (MoE) large language models (LLMs) are gradually becoming the mainstream approach for ultra-large-scale models. Existing optimization efforts for MoE models have focused primarily on coarse-grained MoE architectures. With the emergence of DeepSeek Models, fine-grained MoE models are gaining popularity, yet research on them remains limited. Therefore, we want to discuss the efficiency dynamic under different service loads. Additionally, fine-grained models allow deployers to reduce the number of routed experts, both activated counts and total counts, raising the question of how this reduction affects the trade-off between MoE efficiency and performance. Our findings indicate that while deploying MoE models presents greater challenges, it also offers significant optimization opportunities. Reducing the number of activated experts can lead to substantial efficiency improvements in certain scenarios, with only minor performance degradation. Reducing the total number of experts provides limited efficiency gains but results in severe performance degradation. Our method can increase throughput by at least 10\% without any performance degradation. Overall, we conclude that MoE inference optimization remains an area with substantial potential for exploration and improvement.
Abstract:Federated Learning enables collaborative training of a global model across multiple geographically dispersed clients without the need for data sharing. However, it is susceptible to inference attacks, particularly label inference attacks. Existing studies on label distribution inference exhibits sensitive to the specific settings of the victim client and typically underperforms under defensive strategies. In this study, we propose a novel label distribution inference attack that is stable and adaptable to various scenarios. Specifically, we estimate the size of the victim client's dataset and construct several virtual clients tailored to the victim client. We then quantify the temporal generalization of each class label for the virtual clients and utilize the variation in temporal generalization to train an inference model that predicts the label distribution proportions of the victim client. We validate our approach on multiple datasets, including MNIST, Fashion-MNIST, FER2013, and AG-News. The results demonstrate the superiority of our method compared to state-of-the-art techniques. Furthermore, our attack remains effective even under differential privacy defense mechanisms, underscoring its potential for real-world applications.
Abstract:Large language models (LLMs) exhibit excellent performance in natural language processing (NLP), but remain highly sensitive to the quality of input queries, especially when these queries contain misleading or inaccurate information. Existing methods focus on correcting the output, but they often overlook the potential of improving the ability of LLMs to detect and correct misleading content in the input itself. In this paper, we propose a novel three-stage fine-tuning method that enhances the ability of LLMs to detect and correct misleading information in the input, further improving response accuracy and reducing hallucinations. Specifically, the three stages include (1) training LLMs to identify misleading information, (2) training LLMs to correct the misleading information using built-in or external knowledge, and (3) training LLMs to generate accurate answers based on the corrected queries. To evaluate our method, we conducted experiments on three datasets for the hallucination detection task and the question answering (QA) task, as well as two datasets containing misleading information that we constructed. The experimental results demonstrate that our method significantly improves the accuracy and factuality of LLM responses, while also enhancing the ability to detect hallucinations and reducing the generation of hallucinations in the output, particularly when the query contains misleading information. We will publicly release our code upon acceptance.
Abstract:The rapid expansion of data from diverse sources has made anomaly detection (AD) increasingly essential for identifying unexpected observations that may signal system failures, security breaches, or fraud. As datasets become more complex and high-dimensional, traditional detection methods struggle to effectively capture intricate patterns. Advances in deep learning have made AD methods more powerful and adaptable, improving their ability to handle high-dimensional and unstructured data. This survey provides a comprehensive review of over 180 recent studies, focusing on deep learning-based AD techniques. We categorize and analyze these methods into reconstruction-based and prediction-based approaches, highlighting their effectiveness in modeling complex data distributions. Additionally, we explore the integration of traditional and deep learning methods, highlighting how hybrid approaches combine the interpretability of traditional techniques with the flexibility of deep learning to enhance detection accuracy and model transparency. Finally, we identify open issues and propose future research directions to advance the field of AD. This review bridges gaps in existing literature and serves as a valuable resource for researchers and practitioners seeking to enhance AD techniques using deep learning.