Abstract:Prompt-based continual learning methods effectively mitigate catastrophic forgetting. However, most existing methods assign a fixed set of prompts to each task, completely isolating knowledge across tasks and resulting in suboptimal parameter utilization. To address this, we consider the practical needs of continual learning and propose a prompt-sharing framework. This framework constructs a global prompt pool and introduces a task-aware gated routing mechanism that sparsely activates a subset of prompts to achieve dynamic decoupling and collaborative optimization of task-specific feature representations. Furthermore, we introduce a history-aware modulator that leverages cumulative prompt activation statistics to protect frequently used prompts from excessive updates, thereby mitigating inefficient parameter usage and knowledge forgetting. Extensive analysis and empirical results demonstrate that our approach consistently outperforms existing static allocation strategies in effectiveness and efficiency.
Abstract:Recently, adapting pre-trained models to downstream tasks has attracted increasing interest. Previous Parameter-Efficient-Tuning (PET) methods regard the pre-trained model as an opaque Black Box model, relying purely on data-driven optimization and underutilizing their inherent prior knowledge. This oversight limits the models' potential for effective downstream task adaptation. To address these issues, we propose a novel black-whIte bOx prompT leArning framework (IOTA), which integrates a data-driven Black Box module with a knowledge-driven White Box module for downstream task adaptation. Specifically, the White Box module derives corrective knowledge by contrasting the wrong predictions with the right cognition. This knowledge is verbalized into interpretable human prompts and leveraged through a corrective knowledge-guided prompt selection strategy to guide the Black Box module toward more accurate predictions. By jointly leveraging knowledge- and data-driven learning signals, IOTA achieves effective downstream task adaptation. Experimental results on 12 image classification benchmarks under few-shot and easy-to-hard adaptation settings demonstrate the effectiveness of corrective knowledge and the superiority of our method over state-of-the-art methods.
Abstract:Multi-label Class-Incremental Learning aims to continuously recognize novel categories in complex scenes where multiple objects co-occur. However, existing approaches often incur high computational costs due to full-parameter fine-tuning and substantial storage overhead from memory buffers, or they struggle to address feature confusion and domain discrepancies adequately. To overcome these limitations, we introduce P2L-CA, a parameter-efficient framework that integrates a Prompt-to-Label module with a Continuous Adapter module. The P2L module leverages class-specific prompts to disentangle multi-label representations while incorporating linguistic priors to enforce stable semantic-visual alignment. Meanwhile, the CA module employs lightweight adapters to mitigate domain gaps between pre-trained models and downstream tasks, thereby enhancing model plasticity. Extensive experiments across standard and challenging MLCIL settings on MS-COCO and PASCAL VOC show that P2L-CA not only achieves substantial improvements over state-of-the-art methods but also demonstrates strong generalization in CIL scenarios, all while requiring minimal trainable parameters and eliminating the need for memory buffers.
Abstract:Deep neural networks (DNNs) often underperform in real-world, dynamic settings where data distributions change over time. Domain Incremental Learning (DIL) offers a solution by enabling continual model adaptation, with Parameter-Isolation DIL (PIDIL) emerging as a promising paradigm to reduce knowledge conflicts. However, existing PIDIL methods struggle with parameter selection accuracy, especially as the number of domains and corresponding classes grows. To address this, we propose SOYO, a lightweight framework that improves domain selection in PIDIL. SOYO introduces a Gaussian Mixture Compressor (GMC) and Domain Feature Resampler (DFR) to store and balance prior domain data efficiently, while a Multi-level Domain Feature Fusion Network (MDFN) enhances domain feature extraction. Our framework supports multiple Parameter-Efficient Fine-Tuning (PEFT) methods and is validated across tasks such as image classification, object detection, and speech enhancement. Experimental results on six benchmarks demonstrate SOYO's consistent superiority over existing baselines, showcasing its robustness and adaptability in complex, evolving environments. The codes will be released in https://github.com/qwangcv/SOYO.
Abstract:This study aims to address the problem of multi-domain task incremental learning~(MTIL), which requires that vision-language models~(VLMs) continuously acquire new knowledge while maintaining their inherent zero-shot recognition capability. Existing paradigms delegate the testing of unseen-domain samples to the original CLIP, which only prevents the degradation of the model's zero-shot capability but fails to enhance the generalization of the VLM further. To this end, we propose a novel MTIL framework, named AFA, which comprises two core modules: (1) an against forward-forgetting adapter that learns task-invariant information for each dataset in the incremental tasks to enhance the zero-shot recognition ability of VLMs; (2) an against backward-forgetting adapter that strengthens the few-shot learning capability of VLMs while supporting incremental learning. Extensive experiments demonstrate that the AFA method significantly outperforms existing state-of-the-art approaches, especially in few-shot MTIL tasks, and surpasses the inherent zero-shot performance of CLIP in terms of transferability. The code is provided in the Supplementary Material.
Abstract:Few-shot class-incremental Learning (FSCIL) enables models to learn new classes from limited data while retaining performance on previously learned classes. Traditional FSCIL methods often require fine-tuning parameters with limited new class data and suffer from a separation between learning new classes and utilizing old knowledge. Inspired by the analogical learning mechanisms of the human brain, we propose a novel analogical generative method. Our approach includes the Brain-Inspired Analogical Generator (BiAG), which derives new class weights from existing classes without parameter fine-tuning during incremental stages. BiAG consists of three components: Weight Self-Attention Module (WSA), Weight & Prototype Analogical Attention Module (WPAA), and Semantic Conversion Module (SCM). SCM uses Neural Collapse theory for semantic conversion, WSA supplements new class weights, and WPAA computes analogies to generate new class weights. Experiments on miniImageNet, CUB-200, and CIFAR-100 datasets demonstrate that our method achieves higher final and average accuracy compared to SOTA methods.
Abstract:Prompt tuning can further enhance the performance of visual-language models across various downstream tasks (e.g., few-shot learning), enabling them to better adapt to specific applications and needs. In this paper, we present a Diversity Covariance-Aware framework that learns distributional information from the data to enhance the few-shot ability of the prompt model. First, we propose a covariance-aware method that models the covariance relationships between visual features and uses anisotropic Mahalanobis distance, instead of the suboptimal cosine distance, to measure the similarity between two modalities. We rigorously derive and prove the validity of this modeling process. Then, we propose the diversity-aware method, which learns multiple diverse soft prompts to capture different attributes of categories and aligns them independently with visual modalities. This method achieves multi-centered covariance modeling, leading to more diverse decision boundaries. Extensive experiments on 11 datasets in various tasks demonstrate the effectiveness of our method.
Abstract:With the development of visual-language models (VLM) in downstream task applications, test-time adaptation methods based on VLM have attracted increasing attention for their ability to address changes distribution in test-time. Although prior approaches have achieved some progress, they typically either demand substantial computational resources or are constrained by the limitations of the original feature space, rendering them less effective for test-time adaptation tasks. To address these challenges, we propose a training-free feature space rotation with basis transformation for test-time adaptation. By leveraging the inherent distinctions among classes, we reconstruct the original feature space and map it to a new representation, thereby enhancing the clarity of class differences and providing more effective guidance for the model during testing. Additionally, to better capture relevant information from various classes, we maintain a dynamic queue to store representative samples. Experimental results across multiple benchmarks demonstrate that our method outperforms state-of-the-art techniques in terms of both performance and efficiency.
Abstract:In this paper, we introduce GRID, a novel paradigm that reframes a broad range of visual generation tasks as the problem of arranging grids, akin to film strips. At its core, GRID transforms temporal sequences into grid layouts, enabling image generation models to process visual sequences holistically. To achieve both layout consistency and motion coherence, we develop a parallel flow-matching training strategy that combines layout matching and temporal losses, guided by a coarse-to-fine schedule that evolves from basic layouts to precise motion control. Our approach demonstrates remarkable efficiency, achieving up to 35 faster inference speeds while using 1/1000 of the computational resources compared to specialized models. Extensive experiments show that GRID exhibits exceptional versatility across diverse visual generation tasks, from Text-to-Video to 3D Editing, while maintaining its foundational image generation capabilities. This dual strength in both expanded applications and preserved core competencies establishes GRID as an efficient and versatile omni-solution for visual generation.
Abstract:Existing prompt learning methods in Vision-Language Models (VLM) have effectively enhanced the transfer capability of VLM to downstream tasks, but they suffer from a significant decline in generalization due to severe overfitting. To address this issue, we propose a framework named LOBG for vision-language models. Specifically, we use CLIP to filter out fine-grained foreground information that might cause overfitting, thereby guiding prompts with basic visual concepts. To further mitigate overfitting, we devel oped a structural topology preservation (STP) loss at the feature level, which endows the feature space with overall plasticity, allowing effective reshaping of the feature space during optimization. Additionally, we employed hierarchical logit distilation (HLD) at the output level to constrain outputs, complementing STP at the output end. Extensive experimental results demonstrate that our method significantly improves generalization capability and alleviates overfitting compared to state-of-the-art approaches.