Abstract:Unsupervised reinforcement learning (URL) aims to learn general skills for unseen downstream tasks. Mutual Information Skill Learning (MISL) addresses URL by maximizing the mutual information between states and skills but lacks sufficient theoretical analysis, e.g., how well its learned skills can initialize a downstream task's policy. Our new theoretical analysis in this paper shows that the diversity and separability of learned skills are fundamentally critical to downstream task adaptation but MISL does not necessarily guarantee these properties. To complement MISL, we propose a novel disentanglement metric LSEPIN. Moreover, we build an information-geometric connection between LSEPIN and downstream task adaptation cost. For better geometric properties, we investigate a new strategy that replaces the KL divergence in information geometry with Wasserstein distance. We extend the geometric analysis to it, which leads to a novel skill-learning objective WSEP. It is theoretically justified to be helpful to downstream task adaptation and it is capable of discovering more initial policies for downstream tasks than MISL. We finally propose another Wasserstein distance-based algorithm PWSEP that can theoretically discover all optimal initial policies.
Abstract:Partial differential equations (PDEs) serve as the cornerstone of mathematical physics. In recent years, Physics-Informed Neural Networks (PINNs) have significantly reduced the dependence on large datasets by embedding physical laws directly into the training of neural networks. However, when dealing with complex problems, the accuracy of PINNs still has room for improvement. To address this issue, we introduce the Over-PINNs framework, which leverages automatic differentiation (AD) to generate higher-order auxiliary equations that impose additional physical constraints. These equations are incorporated as extra loss terms in the training process, effectively enhancing the model's ability to capture physical information through an "overdetermined" approach. Numerical results illustrate that this method exhibits strong versatility in solving various types of PDEs. It achieves a significant improvement in solution accuracy without incurring substantial additional computational costs.
Abstract:Mixed Precision Quantization (MPQ) has become an essential technique for optimizing neural network by determining the optimal bitwidth per layer. Existing MPQ methods, however, face a major hurdle: they require a computationally expensive search for quantization policies on large-scale datasets. To resolve this issue, we introduce a novel approach that first searches for quantization policies on small datasets and then generalizes them to large-scale datasets. This approach simplifies the process, eliminating the need for large-scale quantization fine-tuning and only necessitating model weight adjustment. Our method is characterized by three key techniques: sharpness-aware minimization for enhanced quantization generalization, implicit gradient direction alignment to handle gradient conflicts among different optimization objectives, and an adaptive perturbation radius to accelerate optimization. Both theoretical analysis and experimental results validate our approach. Using the CIFAR10 dataset (just 0.5\% the size of ImageNet training data) for MPQ policy search, we achieved equivalent accuracy on ImageNet with a significantly lower computational cost, while improving efficiency by up to 150% over the baselines.
Abstract:Vision Transformers (ViTs) excel in computer vision tasks but lack flexibility for edge devices' diverse needs. A vital issue is that ViTs pre-trained to cover a broad range of tasks are \textit{over-qualified} for edge devices that usually demand only part of a ViT's knowledge for specific tasks. Their task-specific accuracy on these edge devices is suboptimal. We discovered that small ViTs that focus on device-specific tasks can improve model accuracy and in the meantime, accelerate model inference. This paper presents NuWa, an approach that derives small ViTs from the base ViT for edge devices with specific task requirements. NuWa can transfer task-specific knowledge extracted from the base ViT into small ViTs that fully leverage constrained resources on edge devices to maximize model accuracy with inference latency assurance. Experiments with three base ViTs on three public datasets demonstrate that compared with state-of-the-art solutions, NuWa improves model accuracy by up to $\text{11.83}\%$ and accelerates model inference by 1.29$\times$ - 2.79$\times$. Code for reproduction is available at https://anonymous.4open.science/r/Task_Specific-3A5E.
Abstract:Generating high-quality whole-body human object interaction motion sequences is becoming increasingly important in various fields such as animation, VR/AR, and robotics. The main challenge of this task lies in determining the level of involvement of each hand given the complex shapes of objects in different sizes and their different motion trajectories, while ensuring strong grasping realism and guaranteeing the coordination of movement in all body parts. Contrasting with existing work, which either generates human interaction motion sequences without detailed hand grasping poses or only models a static grasping pose, we propose a simple yet effective framework that jointly models the relationship between the body, hands, and the given object motion sequences within a single diffusion model. To guide our network in perceiving the object's spatial position and learning more natural grasping poses, we introduce novel contact-aware losses and incorporate a data-driven, carefully designed guidance. Experimental results demonstrate that our approach outperforms the state-of-the-art method and generates plausible whole-body motion sequences.
Abstract:Deep Reinforcement Learning (DRL) agents have demonstrated impressive success in a wide range of game genres. However, existing research primarily focuses on optimizing DRL competence rather than addressing the challenge of prolonged player interaction. In this paper, we propose a practical DRL agent system for fighting games named Sh\=ukai, which has been successfully deployed to Naruto Mobile, a popular fighting game with over 100 million registered users. Sh\=ukai quantifies the state to enhance generalizability, introducing Heterogeneous League Training (HELT) to achieve balanced competence, generalizability, and training efficiency. Furthermore, Sh\=ukai implements specific rewards to align the agent's behavior with human expectations. Sh\=ukai's ability to generalize is demonstrated by its consistent competence across all characters, even though it was trained on only 13% of them. Additionally, HELT exhibits a remarkable 22% improvement in sample efficiency. Sh\=ukai serves as a valuable training partner for players in Naruto Mobile, enabling them to enhance their abilities and skills.
Abstract:Representation rank is an important concept for understanding the role of Neural Networks (NNs) in Deep Reinforcement learning (DRL), which measures the expressive capacity of value networks. Existing studies focus on unboundedly maximizing this rank; nevertheless, that approach would introduce overly complex models in the learning, thus undermining performance. Hence, fine-tuning representation rank presents a challenging and crucial optimization problem. To address this issue, we find a guiding principle for adaptive control of the representation rank. We employ the Bellman equation as a theoretical foundation and derive an upper bound on the cosine similarity of consecutive state-action pairs representations of value networks. We then leverage this upper bound to propose a novel regularizer, namely BEllman Equation-based automatic rank Regularizer (BEER). This regularizer adaptively regularizes the representation rank, thus improving the DRL agent's performance. We first validate the effectiveness of automatic control of rank on illustrative experiments. Then, we scale up BEER to complex continuous control tasks by combining it with the deterministic policy gradient method. Among 12 challenging DeepMind control tasks, BEER outperforms the baselines by a large margin. Besides, BEER demonstrates significant advantages in Q-value approximation. Our code is available at https://github.com/sweetice/BEER-ICLR2024.
Abstract:The combination of deep reinforcement learning (DRL) with ensemble methods has been proved to be highly effective in addressing complex sequential decision-making problems. This success can be primarily attributed to the utilization of multiple models, which enhances both the robustness of the policy and the accuracy of value function estimation. However, there has been limited analysis of the empirical success of current ensemble RL methods thus far. Our new analysis reveals that the sample efficiency of previous ensemble DRL algorithms may be limited by sub-policies that are not as diverse as they could be. Motivated by these findings, our study introduces a new ensemble RL algorithm, termed \textbf{T}rajectories-awar\textbf{E} \textbf{E}nsemble exploratio\textbf{N} (TEEN). The primary goal of TEEN is to maximize the expected return while promoting more diverse trajectories. Through extensive experiments, we demonstrate that TEEN not only enhances the sample diversity of the ensemble policy compared to using sub-policies alone but also improves the performance over ensemble RL algorithms. On average, TEEN outperforms the baseline ensemble DRL algorithms by 41\% in performance on the tested representative environments.
Abstract:Deep learning is a very promising technique for low-dose computed tomography (LDCT) image denoising. However, traditional deep learning methods require paired noisy and clean datasets, which are often difficult to obtain. This paper proposes a new method for performing LDCT image denoising with only LDCT data, which means that normal-dose CT (NDCT) is not needed. We adopt a combination including the self-supervised noise2noise model and the noisy-as-clean strategy. First, we add a second yet similar type of noise to LDCT images multiple times. Note that we use LDCT images based on the noisy-as-clean strategy for corruption instead of NDCT images. Then, the noise2noise model is executed with only the secondary corrupted images for training. We select a modular U-Net structure from several candidates with shared parameters to perform the task, which increases the receptive field without increasing the parameter size. The experimental results obtained on the Mayo LDCT dataset show the effectiveness of the proposed method compared with that of state-of-the-art deep learning methods. The developed code is available at https://github.com/XYuan01/Self-supervised-Noise2Noise-for-LDCT.
Abstract:We propose a novel value approximation method, namely Eigensubspace Regularized Critic (ERC) for deep reinforcement learning (RL). ERC is motivated by an analysis of the dynamics of Q-value approximation error in the Temporal-Difference (TD) method, which follows a path defined by the 1-eigensubspace of the transition kernel associated with the Markov Decision Process (MDP). It reveals a fundamental property of TD learning that has remained unused in previous deep RL approaches. In ERC, we propose a regularizer that guides the approximation error tending towards the 1-eigensubspace, resulting in a more efficient and stable path of value approximation. Moreover, we theoretically prove the convergence of the ERC method. Besides, theoretical analysis and experiments demonstrate that ERC effectively reduces the variance of value functions. Among 26 tasks in the DMControl benchmark, ERC outperforms state-of-the-art methods for 20. Besides, it shows significant advantages in Q-value approximation and variance reduction. Our code is available at https://sites.google.com/view/erc-ecml23/.