Abstract:Partial differential equations (PDEs) serve as the cornerstone of mathematical physics. In recent years, Physics-Informed Neural Networks (PINNs) have significantly reduced the dependence on large datasets by embedding physical laws directly into the training of neural networks. However, when dealing with complex problems, the accuracy of PINNs still has room for improvement. To address this issue, we introduce the Over-PINNs framework, which leverages automatic differentiation (AD) to generate higher-order auxiliary equations that impose additional physical constraints. These equations are incorporated as extra loss terms in the training process, effectively enhancing the model's ability to capture physical information through an "overdetermined" approach. Numerical results illustrate that this method exhibits strong versatility in solving various types of PDEs. It achieves a significant improvement in solution accuracy without incurring substantial additional computational costs.
Abstract:The segmentation of pelvic fracture fragments in CT and X-ray images is crucial for trauma diagnosis, surgical planning, and intraoperative guidance. However, accurately and efficiently delineating the bone fragments remains a significant challenge due to complex anatomy and imaging limitations. The PENGWIN challenge, organized as a MICCAI 2024 satellite event, aimed to advance automated fracture segmentation by benchmarking state-of-the-art algorithms on these complex tasks. A diverse dataset of 150 CT scans was collected from multiple clinical centers, and a large set of simulated X-ray images was generated using the DeepDRR method. Final submissions from 16 teams worldwide were evaluated under a rigorous multi-metric testing scheme. The top-performing CT algorithm achieved an average fragment-wise intersection over union (IoU) of 0.930, demonstrating satisfactory accuracy. However, in the X-ray task, the best algorithm attained an IoU of 0.774, highlighting the greater challenges posed by overlapping anatomical structures. Beyond the quantitative evaluation, the challenge revealed methodological diversity in algorithm design. Variations in instance representation, such as primary-secondary classification versus boundary-core separation, led to differing segmentation strategies. Despite promising results, the challenge also exposed inherent uncertainties in fragment definition, particularly in cases of incomplete fractures. These findings suggest that interactive segmentation approaches, integrating human decision-making with task-relevant information, may be essential for improving model reliability and clinical applicability.