Lattice
Abstract:From paired image-text training to text-only training for image captioning, the pursuit of relaxing the requirements for high-cost and large-scale annotation of good quality data remains consistent. In this paper, we propose Text-only Synthesis for Image Captioning (ToCa), which further advances this relaxation with fewer human labor and less computing time. Specifically, we deconstruct caption text into structures and lexical words, which serve as the fundamental components of the caption. By combining different structures and lexical words as inputs to the large language model, massive captions that contain various patterns of lexical words are generated. This method not only approaches the target domain but also surpasses it by generating new captions, thereby enhancing the zero-shot generalization ability of the model. Considering the different levels of data access in the real world, we define three synthesis scenarios: cross-domain synthesis, in-domain synthesis, and data-efficient synthesis. Experiments in these scenarios demonstrate the generalizability, transferability and practicability of ToCa with a nearly 5 CIDEr improvement for zero-shot cross-domain captioning and a maximum increase of over 20 CIDEr for data-efficient captioning.
Abstract:The traditional SegNet architecture commonly encounters significant information loss during the sampling process, which detrimentally affects its accuracy in image semantic segmentation tasks. To counter this challenge, we introduce an innovative encoder-decoder network structure enhanced with residual connections. Our approach employs a multi-residual connection strategy designed to preserve the intricate details across various image scales more effectively, thus minimizing the information loss inherent to down-sampling procedures. Additionally, to enhance the convergence rate of network training and mitigate sample imbalance issues, we have devised a modified cross-entropy loss function incorporating a balancing factor. This modification optimizes the distribution between positive and negative samples, thus improving the efficiency of model training. Experimental evaluations of our model demonstrate a substantial reduction in information loss and improved accuracy in semantic segmentation. Notably, our proposed network architecture demonstrates a substantial improvement in the finely annotated mean Intersection over Union (mIoU) on the dataset compared to the conventional SegNet. The proposed network structure not only reduces operational costs by decreasing manual inspection needs but also scales up the deployment of AI-driven image analysis across different sectors.
Abstract:This paper addresses the challenge of collision-free motion planning in automated navigation within complex environments. Utilizing advancements in Deep Reinforcement Learning (DRL) and sensor technologies like LiDAR, we propose the TD3-DWA algorithm, an innovative fusion of the traditional Dynamic Window Approach (DWA) with the Twin Delayed Deep Deterministic Policy Gradient (TD3). This hybrid algorithm enhances the efficiency of robotic path planning by optimizing the sampling interval parameters of DWA to effectively navigate around both static and dynamic obstacles. The performance of the TD3-DWA algorithm is validated through various simulation experiments, demonstrating its potential to significantly improve the reliability and safety of autonomous navigation systems.
Abstract:Few-shot learning aims to generalize the recognizer from seen categories to an entirely novel scenario. With only a few support samples, several advanced methods initially introduce class names as prior knowledge for identifying novel classes. However, obstacles still impede achieving a comprehensive understanding of how to harness the mutual advantages of visual and textual knowledge. In this paper, we propose a coherent Bidirectional Knowledge Permeation strategy called BiKop, which is grounded in a human intuition: A class name description offers a general representation, whereas an image captures the specificity of individuals. BiKop primarily establishes a hierarchical joint general-specific representation through bidirectional knowledge permeation. On the other hand, considering the bias of joint representation towards the base set, we disentangle base-class-relevant semantics during training, thereby alleviating the suppression of potential novel-class-relevant information. Experiments on four challenging benchmarks demonstrate the remarkable superiority of BiKop. Our code will be publicly available.
Abstract:Few-shot segmentation (FSS) for remote sensing (RS) imagery leverages supporting information from limited annotated samples to achieve query segmentation of novel classes. Previous efforts are dedicated to mining segmentation-guiding visual cues from a constrained set of support samples. However, they still struggle to address the pronounced intra-class differences in RS images, as sparse visual cues make it challenging to establish robust class-specific representations. In this paper, we propose a holistic semantic embedding (HSE) approach that effectively harnesses general semantic knowledge, i.e., class description (CD) embeddings.Instead of the naive combination of CD embeddings and visual features for segmentation decoding, we investigate embedding the general semantic knowledge during the feature extraction stage.Specifically, in HSE, a spatial dense interaction module allows the interaction of visual support features with CD embeddings along the spatial dimension via self-attention.Furthermore, a global content modulation module efficiently augments the global information of the target category in both support and query features, thanks to the transformative fusion of visual features and CD embeddings.These two components holistically synergize general CD embeddings and visual cues, constructing a robust class-specific representation.Through extensive experiments on the standard FSS benchmark, the proposed HSE approach demonstrates superior performance compared to peer work, setting a new state-of-the-art.
Abstract:The internal structure and operation mechanism of large-scale language models are analyzed theoretically, especially how Transformer and its derivative architectures can restrict computing efficiency while capturing long-term dependencies. Further, we dig deep into the efficiency bottleneck of the training phase, and evaluate in detail the contribution of adaptive optimization algorithms (such as AdamW), massively parallel computing techniques, and mixed precision training strategies to accelerate convergence and reduce memory footprint. By analyzing the mathematical principles and implementation details of these algorithms, we reveal how they effectively improve training efficiency in practice. In terms of model deployment and inference optimization, this paper systematically reviews the latest advances in model compression techniques, focusing on strategies such as quantification, pruning, and knowledge distillation. By comparing the theoretical frameworks of these techniques and their effects in different application scenarios, we demonstrate their ability to significantly reduce model size and inference delay while maintaining model prediction accuracy. In addition, this paper critically examines the limitations of current efficiency optimization methods, such as the increased risk of overfitting, the control of performance loss after compression, and the problem of algorithm generality, and proposes some prospects for future research. In conclusion, this study provides a comprehensive theoretical framework for understanding the efficiency optimization of large-scale language models.
Abstract:Recently, implicit neural representation has been widely used to generate animatable human avatars. However, the materials and geometry of those representations are coupled in the neural network and hard to edit, which hinders their application in traditional graphics engines. We present a framework for acquiring human avatars that are attached with high-resolution physically-based material textures and triangular mesh from monocular video. Our method introduces a novel information fusion strategy to combine the information from the monocular video and synthesize virtual multi-view images to tackle the sparsity of the input view. We reconstruct humans as deformable neural implicit surfaces and extract triangle mesh in a well-behaved pose as the initial mesh of the next stage. In addition, we introduce an approach to correct the bias for the boundary and size of the coarse mesh extracted. Finally, we adapt prior knowledge of the latent diffusion model at super-resolution in multi-view to distill the decomposed texture. Experiments show that our approach outperforms previous representations in terms of high fidelity, and this explicit result supports deployment on common renderers.
Abstract:Unsupervised graph-level anomaly detection (UGAD) has received remarkable performance in various critical disciplines, such as chemistry analysis and bioinformatics. Existing UGAD paradigms often adopt data augmentation techniques to construct multiple views, and then employ different strategies to obtain representations from different views for jointly conducting UGAD. However, most previous works only considered the relationship between nodes/graphs from a limited receptive field, resulting in some key structure patterns and feature information being neglected. In addition, most existing methods consider different views separately in a parallel manner, which is not able to explore the inter-relationship across different views directly. Thus, a method with a larger receptive field that can explore the inter-relationship across different views directly is in need. In this paper, we propose a novel Simplified Transformer with Cross-View Attention for Unsupervised Graph-level Anomaly Detection, namely, CVTGAD. To increase the receptive field, we construct a simplified transformer-based module, exploiting the relationship between nodes/graphs from both intra-graph and inter-graph perspectives. Furthermore, we design a cross-view attention mechanism to directly exploit the view co-occurrence between different views, bridging the inter-view gap at node level and graph level. To the best of our knowledge, this is the first work to apply transformer and cross attention to UGAD, which realizes graph neural network and transformer working collaboratively. Extensive experiments on 15 real-world datasets of 3 fields demonstrate the superiority of CVTGAD on the UGAD task. The code is available at \url{https://github.com/jindongli-Ai/CVTGAD}.
Abstract:Despite their impressive generative performance, latent diffusion model-based virtual try-on (VTON) methods lack faithfulness to crucial details of the clothes, such as style, pattern, and text. To alleviate these issues caused by the diffusion stochastic nature and latent supervision, we propose a novel Faithful Latent Diffusion Model for VTON, termed FLDM-VTON. FLDM-VTON improves the conventional latent diffusion process in three major aspects. First, we propose incorporating warped clothes as both the starting point and local condition, supplying the model with faithful clothes priors. Second, we introduce a novel clothes flattening network to constrain generated try-on images, providing clothes-consistent faithful supervision. Third, we devise a clothes-posterior sampling for faithful inference, further enhancing the model performance over conventional clothes-agnostic Gaussian sampling. Extensive experimental results on the benchmark VITON-HD and Dress Code datasets demonstrate that our FLDM-VTON outperforms state-of-the-art baselines and is able to generate photo-realistic try-on images with faithful clothing details.
Abstract:Automatic 3D facial texture generation has gained significant interest recently. Existing approaches may not support the traditional physically based rendering pipeline or rely on 3D data captured by Light Stage. Our key contribution is a progressive latent space refinement approach that can bootstrap from 3D Morphable Models (3DMMs)-based texture maps generated from facial images to generate high-quality and diverse PBR textures, including albedo, normal, and roughness. It starts with enhancing Generative Adversarial Networks (GANs) for text-guided and diverse texture generation. To this end, we design a self-supervised paradigm to overcome the reliance on ground truth 3D textures and train the generative model with only entangled texture maps. Besides, we foster mutual enhancement between GANs and Score Distillation Sampling (SDS). SDS boosts GANs with more generative modes, while GANs promote more efficient optimization of SDS. Furthermore, we introduce an edge-aware SDS for multi-view consistent facial structure. Experiments demonstrate that our method outperforms existing 3D texture generation methods regarding photo-realistic quality, diversity, and efficiency.