Abstract:Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts. However, these approaches typically require tens or even hundreds of iterative samplings, resulting in significant latency. Recently, techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation. Nonetheless, when aligning the knowledge of student and teacher models, these solutions either solely rely on pixel-level loss constraints or neglect the fact that diffusion models prioritize varying levels of information at different time steps. To accomplish effective and efficient image super-resolution, we propose a time-aware diffusion distillation method, named TAD-SR. Specifically, we introduce a novel score distillation strategy to align the data distribution between the outputs of the student and teacher models after minor noise perturbation. This distillation strategy enables the student network to concentrate more on the high-frequency details. Furthermore, to mitigate performance limitations stemming from distillation, we integrate a latent adversarial loss and devise a time-aware discriminator that leverages diffusion priors to effectively distinguish between real images and generated images. Extensive experiments conducted on synthetic and real-world datasets demonstrate that the proposed method achieves comparable or even superior performance compared to both previous state-of-the-art (SOTA) methods and the teacher model in just one sampling step. Codes are available at https://github.com/LearningHx/TAD-SR.
Abstract:Due to the successful development of deep image generation technology, forgery detection plays a more important role in social and economic security. Racial bias has not been explored thoroughly in the deep forgery detection field. In the paper, we first contribute a dedicated dataset called the Fair Forgery Detection (FairFD) dataset, where we prove the racial bias of public state-of-the-art (SOTA) methods. Different from existing forgery detection datasets, the self-construct FairFD dataset contains a balanced racial ratio and diverse forgery generation images with the largest-scale subjects. Additionally, we identify the problems with naive fairness metrics when benchmarking forgery detection models. To comprehensively evaluate fairness, we design novel metrics including Approach Averaged Metric and Utility Regularized Metric, which can avoid deceptive results. Extensive experiments conducted with nine representative forgery detection models demonstrate the value of the proposed dataset and the reasonability of the designed fairness metrics. We also conduct more in-depth analyses to offer more insights to inspire researchers in the community.
Abstract:Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat. Traditional forgery detection methods directly centralized training on data and lacked consideration of information sharing in non-public video data scenarios and data privacy. Naturally, the federated learning strategy can be applied for privacy protection, which aggregates model parameters of clients but not original data. However, simple federated learning can't achieve satisfactory performance because of poor generalization capabilities for the real hybrid-domain forgery dataset. To solve the problem, the paper proposes a novel federated face forgery detection learning with personalized representation. The designed Personalized Forgery Representation Learning aims to learn the personalized representation of each client to improve the detection performance of individual client models. In addition, a personalized federated learning training strategy is utilized to update the parameters of the distributed detection model. Here collaborative training is conducted on multiple distributed client devices, and shared representations of these client models are uploaded to the server side for aggregation. Experiments on several public face forgery detection datasets demonstrate the superior performance of the proposed algorithm compared with state-of-the-art methods. The code is available at \emph{https://github.com/GANG370/PFR-Forgery.}
Abstract:With the great development of generative model techniques, face forgery detection draws more and more attention in the related field. Researchers find that existing face forgery models are still vulnerable to adversarial examples with generated pixel perturbations in the global image. These generated adversarial samples still can't achieve satisfactory performance because of the high detectability. To address these problems, we propose an Adversarial Semantic Mask Attack framework (ASMA) which can generate adversarial examples with good transferability and invisibility. Specifically, we propose a novel adversarial semantic mask generative model, which can constrain generated perturbations in local semantic regions for good stealthiness. The designed adaptive semantic mask selection strategy can effectively leverage the class activation values of different semantic regions, and further ensure better attack transferability and stealthiness. Extensive experiments on the public face forgery dataset prove the proposed method achieves superior performance compared with several representative adversarial attack methods. The code is publicly available at https://github.com/clawerO-O/ASMA.
Abstract:To facilitate the evolution of edge intelligence in ever-changing environments, we study on-device incremental learning constrained in limited computation resource in this paper. Current on-device training methods just focus on efficient training without considering the catastrophic forgetting, preventing the model getting stronger when continually exploring the world. To solve this problem, a direct solution is to involve the existing incremental learning mechanisms into the on-device training framework. Unfortunately, such a manner cannot work well as those mechanisms usually introduce large additional computational cost to the network optimization process, which would inevitably exceed the memory capacity of the edge devices. To address this issue, this paper makes an early effort to propose a simple but effective edge-friendly incremental learning framework. Based on an empirical study on the knowledge intensity of the kernel elements of the neural network, we find that the center kernel is the key for maximizing the knowledge intensity for learning new data, while freezing the other kernel elements would get a good balance on the model's capacity for overcoming catastrophic forgetting. Upon this finding, we further design a center-sensitive kernel optimization framework to largely alleviate the cost of the gradient computation and back-propagation. Besides, a dynamic channel element selection strategy is also proposed to facilitate a sparse orthogonal gradient projection for further reducing the optimization complexity, upon the knowledge explored from the new task data. Extensive experiments validate our method is efficient and effective, e.g., our method achieves average accuracy boost of 38.08% with even less memory and approximate computation compared to existing on-device training methods, indicating its significant potential for on-device incremental learning.
Abstract:Existing prompt-tuning methods have demonstrated impressive performances in continual learning (CL), by selecting and updating relevant prompts in the vision-transformer models. On the contrary, this paper aims to learn each task by tuning the prompts in the direction orthogonal to the subspace spanned by previous tasks' features, so as to ensure no interference on tasks that have been learned to overcome catastrophic forgetting in CL. However, different from the orthogonal projection in the traditional CNN architecture, the prompt gradient orthogonal projection in the ViT architecture shows completely different and greater challenges, i.e., 1) the high-order and non-linear self-attention operation; 2) the drift of prompt distribution brought by the LayerNorm in the transformer block. Theoretically, we have finally deduced two consistency conditions to achieve the prompt gradient orthogonal projection, which provide a theoretical guarantee of eliminating interference on previously learned knowledge via the self-attention mechanism in visual prompt tuning. In practice, an effective null-space-based approximation solution has been proposed to implement the prompt gradient orthogonal projection. Extensive experimental results demonstrate the effectiveness of anti-forgetting on four class-incremental benchmarks with diverse pre-trained baseline models, and our approach achieves superior performances to state-of-the-art methods. Our code is available at https://github.com/zugexiaodui/VPTinNSforCL.
Abstract:In recent years, instruction-based image editing methods have garnered significant attention in image editing. However, despite encompassing a wide range of editing priors, these methods are helpless when handling editing tasks that are challenging to accurately describe through language. We propose InstructBrush, an inversion method for instruction-based image editing methods to bridge this gap. It extracts editing effects from exemplar image pairs as editing instructions, which are further applied for image editing. Two key techniques are introduced into InstructBrush, Attention-based Instruction Optimization and Transformation-oriented Instruction Initialization, to address the limitations of the previous method in terms of inversion effects and instruction generalization. To explore the ability of instruction inversion methods to guide image editing in open scenarios, we establish a TransformationOriented Paired Benchmark (TOP-Bench), which contains a rich set of scenes and editing types. The creation of this benchmark paves the way for further exploration of instruction inversion. Quantitatively and qualitatively, our approach achieves superior performance in editing and is more semantically consistent with the target editing effects.
Abstract:In real-world applications, image degeneration caused by adverse weather is always complex and changes with different weather conditions from days and seasons. Systems in real-world environments constantly encounter adverse weather conditions that are not previously observed. Therefore, it practically requires adverse weather removal models to continually learn from incrementally collected data reflecting various degeneration types. Existing adverse weather removal approaches, for either single or multiple adverse weathers, are mainly designed for a static learning paradigm, which assumes that the data of all types of degenerations to handle can be finely collected at one time before a single-phase learning process. They thus cannot directly handle the incremental learning requirements. To address this issue, we made the earliest effort to investigate the continual all-in-one adverse weather removal task, in a setting closer to real-world applications. Specifically, we develop a novel continual learning framework with effective knowledge replay (KR) on a unified network structure. Equipped with a principal component projection and an effective knowledge distillation mechanism, the proposed KR techniques are tailored for the all-in-one weather removal task. It considers the characteristics of the image restoration task with multiple degenerations in continual learning, and the knowledge for different degenerations can be shared and accumulated in the unified network structure. Extensive experimental results demonstrate the effectiveness of the proposed method to deal with this challenging task, which performs competitively to existing dedicated or joint training image restoration methods. Our code is available at https://github.com/xiaojihh/CL_all-in-one.
Abstract:Federated semi-supervised learning (FSSL) has emerged as a powerful paradigm for collaboratively training machine learning models using distributed data with label deficiency. Advanced FSSL methods predominantly focus on training a single model on each client. However, this approach could lead to a discrepancy between the objective functions of labeled and unlabeled data, resulting in gradient conflicts. To alleviate gradient conflict, we propose a novel twin-model paradigm, called Twin-sight, designed to enhance mutual guidance by providing insights from different perspectives of labeled and unlabeled data. In particular, Twin-sight concurrently trains a supervised model with a supervised objective function while training an unsupervised model using an unsupervised objective function. To enhance the synergy between these two models, Twin-sight introduces a neighbourhood-preserving constraint, which encourages the preservation of the neighbourhood relationship among data features extracted by both models. Our comprehensive experiments on four benchmark datasets provide substantial evidence that Twin-sight can significantly outperform state-of-the-art methods across various experimental settings, demonstrating the efficacy of the proposed Twin-sight.
Abstract:Unsupervised visible-infrared person re-identification (USL-VI-ReID) aims to retrieve pedestrian images of the same identity from different modalities without annotations. While prior work focuses on establishing cross-modality pseudo-label associations to bridge the modality-gap, they ignore maintaining the instance-level homogeneous and heterogeneous consistency in pseudo-label space, resulting in coarse associations. In response, we introduce a Modality-Unified Label Transfer (MULT) module that simultaneously accounts for both homogeneous and heterogeneous fine-grained instance-level structures, yielding high-quality cross-modality label associations. It models both homogeneous and heterogeneous affinities, leveraging them to define the inconsistency for the pseudo-labels and then minimize it, leading to pseudo-labels that maintain alignment across modalities and consistency within intra-modality structures. Additionally, a straightforward plug-and-play Online Cross-memory Label Refinement (OCLR) module is proposed to further mitigate the impact of noisy pseudo-labels while simultaneously aligning different modalities, coupled with a Modality-Invariant Representation Learning (MIRL) framework. Experiments demonstrate that our proposed method outperforms existing USL-VI-ReID methods, highlighting the superiority of our MULT in comparison to other cross-modality association methods. The code will be available.