Abstract:This paper proposes the User Viewing Flow Modeling (SINGLE) method for the article recommendation task, which models the user constant preference and instant interest from user-clicked articles. Specifically, we employ a user constant viewing flow modeling method to summarize the user's general interest to recommend articles. We utilize Large Language Models (LLMs) to capture constant user preferences from previously clicked articles, such as skills and positions. Then we design the user instant viewing flow modeling method to build interactions between user-clicked article history and candidate articles. It attentively reads the representations of user-clicked articles and aims to learn the user's different interest views to match the candidate article. Our experimental results on the Alibaba Technology Association (ATA) website show the advantage of SINGLE, which achieves 2.4% improvements over previous baseline models in the online A/B test. Our further analyses illustrate that SINGLE has the ability to build a more tailored recommendation system by mimicking different article viewing behaviors of users and recommending more appropriate and diverse articles to match user interests.
Abstract:In settings such as e-recruitment and online dating, recommendation involves distributing limited opportunities, calling for novel approaches to quantify and enforce fairness. We introduce \emph{inferiority}, a novel (un)fairness measure quantifying a user's competitive disadvantage for their recommended items. Inferiority complements \emph{envy}, a fairness notion measuring preference for others' recommendations. We combine inferiority and envy with \emph{utility}, an accuracy-related measure of aggregated relevancy scores. Since these measures are non-differentiable, we reformulate them using a probabilistic interpretation of recommender systems, yielding differentiable versions. We combine these loss functions in a multi-objective optimization problem called \texttt{FEIR} (Fairness through Envy and Inferiority Reduction), applied as post-processing for standard recommender systems. Experiments on synthetic and real-world data demonstrate that our approach improves trade-offs between inferiority, envy, and utility compared to naive recommendations and the baseline methods.
Abstract:Large-scale astronomical surveys can capture numerous images of celestial objects, including galaxies and nebulae. Analysing and processing these images can reveal intricate internal structures of these objects, allowing researchers to conduct comprehensive studies on their morphology, evolution, and physical properties. However, varying noise levels and point spread functions can hamper the accuracy and efficiency of information extraction from these images. To mitigate these effects, we propose a novel image restoration algorithm that connects a deep learning-based restoration algorithm with a high-fidelity telescope simulator. During the training stage, the simulator generates images with different levels of blur and noise to train the neural network based on the quality of restored images. After training, the neural network can directly restore images obtained by the telescope, as represented by the simulator. We have tested the algorithm using real and simulated observation data and have found that it effectively enhances fine structures in blurry images and increases the quality of observation images. This algorithm can be applied to large-scale sky survey data, such as data obtained by LSST, Euclid, and CSST, to further improve the accuracy and efficiency of information extraction, promoting advances in the field of astronomical research.
Abstract:Automated occupation extraction and standardization from free-text job postings and resumes are crucial for applications like job recommendation and labor market policy formation. This paper introduces LLM4Jobs, a novel unsupervised methodology that taps into the capabilities of large language models (LLMs) for occupation coding. LLM4Jobs uniquely harnesses both the natural language understanding and generation capacities of LLMs. Evaluated on rigorous experimentation on synthetic and real-world datasets, we demonstrate that LLM4Jobs consistently surpasses unsupervised state-of-the-art benchmarks, demonstrating its versatility across diverse datasets and granularities. As a side result of our work, we present both synthetic and real-world datasets, which may be instrumental for subsequent research in this domain. Overall, this investigation highlights the promise of contemporary LLMs for the intricate task of occupation extraction and standardization, laying the foundation for a robust and adaptable framework relevant to both research and industrial contexts.
Abstract:Medical image segmentation is critical for diagnosing and treating spinal disorders. However, the presence of high noise, ambiguity, and uncertainty makes this task highly challenging. Factors such as unclear anatomical boundaries, inter-class similarities, and irrational annotations contribute to this challenge. Achieving both accurate and diverse segmentation templates is essential to support radiologists in clinical practice. In recent years, denoising diffusion probabilistic modeling (DDPM) has emerged as a prominent research topic in computer vision. It has demonstrated effectiveness in various vision tasks, including image deblurring, super-resolution, anomaly detection, and even semantic representation generation at the pixel level. Despite the robustness of existing diffusion models in visual generation tasks, they still struggle with discrete masks and their various effects. To address the need for accurate and diverse spine medical image segmentation templates, we propose an end-to-end framework called VerseDiff-UNet, which leverages the denoising diffusion probabilistic model (DDPM). Our approach integrates the diffusion model into a standard U-shaped architecture. At each step, we combine the noise-added image with the labeled mask to guide the diffusion direction accurately towards the target region. Furthermore, to capture specific anatomical a priori information in medical images, we incorporate a shape a priori module. This module efficiently extracts structural semantic information from the input spine images. We evaluate our method on a single dataset of spine images acquired through X-ray imaging. Our results demonstrate that VerseDiff-UNet significantly outperforms other state-of-the-art methods in terms of accuracy while preserving the natural features and variations of anatomy.
Abstract:With the development of computational fluid dynamics, the requirements for the fluid simulation accuracy in industrial applications have also increased. The quality of the generated mesh directly affects the simulation accuracy. However, previous mesh quality metrics and models cannot evaluate meshes comprehensively and objectively. To this end, we propose MQENet, a structured mesh quality evaluation neural network based on dynamic graph attention. MQENet treats the mesh evaluation task as a graph classification task for classifying the quality of the input structured mesh. To make graphs generated from structured meshes more informative, MQENet introduces two novel structured mesh preprocessing algorithms. These two algorithms can also improve the conversion efficiency of structured mesh data. Experimental results on the benchmark structured mesh dataset NACA-Market show the effectiveness of MQENet in the mesh quality evaluation task.
Abstract:In recent years, the joint training of speech enhancement front-end and automatic speech recognition (ASR) back-end has been widely used to improve the robustness of ASR systems. Traditional joint training methods only use enhanced speech as input for the backend. However, it is difficult for speech enhancement systems to directly separate speech from input due to the diverse types of noise with different intensities. Furthermore, speech distortion and residual noise are often observed in enhanced speech, and the distortion of speech and noise is different. Most existing methods focus on fusing enhanced and noisy features to address this issue. In this paper, we propose a dual-stream spectrogram refine network to simultaneously refine the speech and noise and decouple the noise from the noisy input. Our proposed method can achieve better performance with a relative 8.6% CER reduction.
Abstract:This paper studies the computational offloading of video action recognition in edge computing. To achieve effective semantic information extraction and compression, following semantic communication we propose a novel spatiotemporal attention-based autoencoder (STAE) architecture, including a frame attention module and a spatial attention module, to evaluate the importance of frames and pixels in each frame. Additionally, we use entropy encoding to remove statistical redundancy in the compressed data to further reduce communication overhead. At the receiver, we develop a lightweight decoder that leverages a 3D-2D CNN combined architecture to reconstruct missing information by simultaneously learning temporal and spatial information from the received data to improve accuracy. To fasten convergence, we use a step-by-step approach to train the resulting STAE-based vision transformer (ViT_STAE) models. Experimental results show that ViT_STAE can compress the video dataset HMDB51 by 104x with only 5% accuracy loss, outperforming the state-of-the-art baseline DeepISC. The proposed ViT_STAE achieves faster inference and higher accuracy than the DeepISC-based ViT model under time-varying wireless channel, which highlights the effectiveness of STAE in guaranteeing higher accuracy under time constraints.
Abstract:Recently, stunning improvements on multi-channel speech separation have been achieved by neural beamformers when direction information is available. However, most of them neglect to utilize speaker's 2-dimensional (2D) location cues contained in mixture signal, which limits the performance when two sources come from close directions. In this paper, we propose an end-to-end beamforming network for 2D location guided speech separation merely given mixture signal. It first estimates discriminable direction and 2D location cues, which imply directions the sources come from in multi views of microphones and their 2D coordinates. These cues are then integrated into location-aware neural beamformer, thus allowing accurate reconstruction of two sources' speech signals. Experiments show that our proposed model not only achieves a comprehensive decent improvement compared to baseline systems, but avoids inferior performance on spatial overlapping cases.
Abstract:We present SkillGPT, a tool for skill extraction and standardization (SES) from free-style job descriptions and user profiles with an open-source Large Language Model (LLM) as backbone. Most previous methods for similar tasks either need supervision or rely on heavy data-preprocessing and feature engineering. Directly prompting the latest conversational LLM for standard skills, however, is slow, costly and inaccurate. In contrast, SkillGPT utilizes a LLM to perform its tasks in steps via summarization and vector similarity search, to balance speed with precision. The backbone LLM of SkillGPT is based on Llama, free for academic use and thus useful for exploratory research and prototype development. Hence, our cost-free SkillGPT gives users the convenience of conversational SES, efficiently and reliably.