Pretrained large language models have become indispensable for solving various natural language processing (NLP) tasks. However, safely deploying them in real world applications is challenging because they generate toxic content. To address this challenge, we propose two novel pretraining data augmentation strategies that significantly reduce model toxicity without compromising its utility. Our two strategies are: (1) MEDA: adds raw toxicity score as meta-data to the pretraining samples, and (2) INST: adds instructions to those samples indicating their toxicity. Our results indicate that our best performing strategy (INST) substantially reduces the toxicity probability up to 61% while preserving the accuracy on five benchmark NLP tasks as well as improving AUC scores on four bias detection tasks by 1.3%. We also demonstrate the generalizability of our techniques by scaling the number of training samples and the number of model parameters.
Parameter efficient learning methods (PERMs) have recently gained significant attention as they provide an efficient way for pre-trained language models (PLMs) to adapt to a downstream task. However, these conclusions are mostly drawn from in-domain evaluations over the full training set. In this paper, we present comparisons between PERMs and finetuning from three new perspectives: (1) the effect of sample and model size to in-domain evaluations, (2) generalization to unseen domains and new datasets, and (3) the faithfulness of generations. Our results show that for in-domain settings (a) there is a cross point of sample size for which PERMs will perform better than finetuning when training with fewer samples, and (b) larger PLMs have larger cross points. For cross-domain and cross-dataset cases, we show that (a) Adapter (Houlsby et al., 2019) performs the best amongst all the PERMs studied here, and (b) it outperforms finetuning if the task dataset is below a certain size. We also compare the faithfulness of generations and show that PERMs can achieve better faithfulness score than finetuning, especially for small training set, by as much as 6%. Finally, we apply Adapter to MT-NLG 530b (Smith et al., 2022) and achieve new state-of-the-art results on Xsum (Narayan et al., 2018) for all ROUGE scores (ROUGE-1 49.17, ROUGE-2 27.20, ROUGE-L 40.98).
Closed-book question answering (QA) requires a model to directly answer an open-domain question without access to any external knowledge. Prior work on closed-book QA either directly finetunes or prompts a pretrained language model (LM) to leverage the stored knowledge. However, they do not fully exploit the parameterized knowledge. To address this issue, we propose a two-stage, closed-book QA framework which employs a coarse-to-fine approach to extract relevant knowledge and answer a question. Our approach first generates a related context for a given question by prompting a pretrained LM. We then prompt the same LM for answer prediction using the generated context and the question. Additionally, to eliminate failure caused by context uncertainty, we marginalize over generated contexts. Experimental results on three QA benchmarks show that our method significantly outperforms previous closed-book QA methods (e.g. exact matching 68.6% vs. 55.3%), and is on par with open-book methods that exploit external knowledge sources (e.g. 68.6% vs. 68.0%). Our method is able to better exploit the stored knowledge in pretrained LMs without adding extra learnable parameters or needing finetuning, and paves the way for hybrid models that integrate pretrained LMs with external knowledge.
Pretrained language models (LMs) are susceptible to generate text with nonfactual information. In this work, we measure and improve the factual accuracy of large-scale LMs for open-ended text generation. We design the FactualityPrompts test set and metrics to measure the factuality of LM generations. Based on that, we study the factual accuracy of LMs with parameter sizes ranging from 126M to 530B. Interestingly, we find that larger LMs are more factual than smaller ones, although a previous study suggests that larger LMs can be less truthful in terms of misconceptions. In addition, popular sampling algorithms (e.g., top-p) in open-ended text generation can harm the factuality due to the "uniform randomness" introduced at every sampling step. We propose the factual-nucleus sampling algorithm that dynamically adapts the randomness to improve the factuality of generation while maintaining quality. Furthermore, we analyze the inefficiencies of the standard training method in learning correct associations between entities from factual text corpus (e.g., Wikipedia). We propose a factuality-enhanced training method that uses TopicPrefix for better awareness of facts and sentence completion as the training objective, which can vastly reduce the factual errors.
Existing knowledge-grounded dialogue systems typically use finetuned versions of a pretrained language model (LM) and large-scale knowledge bases. These models typically fail to generalize on topics outside of the knowledge base, and require maintaining separate potentially large checkpoints each time finetuning is needed. In this paper, we aim to address these limitations by leveraging the inherent knowledge stored in the pretrained LM as well as its powerful generation ability. We propose a multi-stage prompting approach to generate knowledgeable responses from a single pretrained LM. We first prompt the LM to generate knowledge based on the dialogue context. Then, we further prompt it to generate responses based on the dialogue context and the previously generated knowledge. Results show that our knowledge generator outperforms the state-of-the-art retrieval-based model by 5.8% when combining knowledge relevance and correctness. In addition, our multi-stage prompting outperforms the finetuning-based dialogue model in terms of response knowledgeability and engagement by up to 10% and 5%, respectively. Furthermore, we scale our model up to 530 billion parameters and show that larger LMs improve the generation correctness score by up to 10%, and response relevance, knowledgeability and engagement by up to 10%. Our code is available at: https://github.com/NVIDIA/Megatron-LM.
Pre-trained language models (LMs) are shown to easily generate toxic language. In this work, we systematically explore domain-adaptive training to reduce the toxicity of language models. We conduct this study on three dimensions: training corpus, model size, and parameter efficiency. For the training corpus, we propose to leverage the generative power of LMs and generate nontoxic datasets for domain-adaptive training, which mitigates the exposure bias and is shown to be more data-efficient than using a curated pre-training corpus. We demonstrate that the self-generation method consistently outperforms the existing baselines across various model sizes on both automatic and human evaluations, even when it uses a 1/3 smaller training corpus. We then comprehensively study detoxifying LMs with parameter sizes ranging from 126M up to 530B (3x larger than GPT-3), a scale that has never been studied before. We find that i) large LMs have similar toxicity levels as smaller ones given the same pre-training corpus, and ii) large LMs require more endeavor to detoxify. We also explore parameter-efficient training methods for detoxification. We demonstrate that adding and training adapter-only layers in LMs not only saves a lot of parameters but also achieves a better trade-off between toxicity and perplexity than whole model adaptation for the large-scale models.
Pretrained general-purpose language models can achieve state-of-the-art accuracies in various natural language processing domains by adapting to downstream tasks via zero-shot, few-shot and fine-tuning techniques. Because of their success, the size of these models has increased rapidly, requiring high-performance hardware, software, and algorithmic techniques to enable training such large models. As the result of a joint effort between Microsoft and NVIDIA, we present details on the training of the largest monolithic transformer based language model, Megatron-Turing NLG 530B (MT-NLG), with 530 billion parameters. In this paper, we first focus on the infrastructure as well as the 3D parallelism methodology used to train this model using DeepSpeed and Megatron. Next, we detail the training process, the design of our training corpus, and our data curation techniques, which we believe is a key ingredient to the success of the model. Finally, we discuss various evaluation results, as well as other interesting observations and new properties exhibited by MT-NLG. We demonstrate that MT-NLG achieves superior zero-, one-, and few-shot learning accuracies on several NLP benchmarks and establishes new state-of-the-art results. We believe that our contributions will help further the development of large-scale training infrastructures, large-scale language models, and natural language generations.
Large language models have led to state-of-the-art accuracies across a range of tasks. However, training these large models efficiently is challenging for two reasons: a) GPU memory capacity is limited, making it impossible to fit large models on a single GPU or even on a multi-GPU server; and b) the number of compute operations required to train these models can result in unrealistically long training times. New methods of model parallelism such as tensor and pipeline parallelism have been proposed to address these challenges; unfortunately, naive usage leads to fundamental scaling issues at thousands of GPUs due to various reasons, e.g., expensive cross-node communication or idle periods waiting on other devices. In this work, we show how to compose different types of parallelism methods (tensor, pipeline, and data paralleism) to scale to thousands of GPUs, achieving a two-order-of-magnitude increase in the sizes of models we can efficiently train compared to existing systems. We discuss various implementations of pipeline parallelism and propose a novel schedule that can improve throughput by more than 10% with comparable memory footprint compared to previously-proposed approaches. We quantitatively study the trade-offs between tensor, pipeline, and data parallelism, and provide intuition as to how to configure distributed training of a large model. The composition of these techniques allows us to perform training iterations on a model with 1 trillion parameters at 502 petaFLOP/s on 3072 GPUs with achieved per-GPU throughput of 52% of peak; previous efforts to train similar-sized models achieve much lower throughput (36% of theoretical peak). Our code has been open-sourced at https://github.com/nvidia/megatron-lm.
Recent work on training neural retrievers for open-domain question answering (OpenQA) has employed both supervised and unsupervised approaches. However, it remains unclear how unsupervised and supervised methods can be used most effectively for neural retrievers. In this work, we systematically study retriever pre-training. We first propose an approach of unsupervised pre-training with the Inverse Cloze Task and masked salient spans, followed by supervised finetuning using question-context pairs. This approach leads to absolute gains of 2+ points over the previous best result in the top-20 retrieval accuracy on Natural Questions and TriviaQA datasets. We also explore two approaches for end-to-end supervised training of the reader and retriever components in OpenQA models. In the first approach, the reader considers each retrieved document separately while in the second approach, the reader considers all the retrieved documents together. Our experiments demonstrate the effectiveness of these approaches as we obtain new state-of-the-art results. On the Natural Questions dataset, we obtain a top-20 retrieval accuracy of 84, an improvement of 5 points over the recent DPR model. In addition, we achieve good results on answer extraction, outperforming recent models like REALM and RAG by 3+ points. We further scale up end-to-end training to large models and show consistent gains in performance over smaller models.
State-of-the-art conversational agents have advanced significantly in conjunction with the use of large transformer-based language models. However, even with these advancements, conversational agents still lack the ability to produce responses that are informative and coherent with the local context. In this work, we propose a dialog framework that incorporates both local knowledge as well as users' past dialogues to generate high quality conversations. We introduce an approach to build a dataset based on Reddit conversations, where outbound URL links are widely available in the conversations and the hyperlinked documents can be naturally included as local external knowledge. Using our framework and dataset, we demonstrate that incorporating local knowledge can largely improve informativeness, coherency and realisticness measures using human evaluations. In particular, our approach consistently outperforms the state-of-the-art conversational model on the Reddit dataset across all three measures. We also find that scaling the size of our models from 117M to 8.3B parameters yields consistent improvement of validation perplexity as well as human evaluated metrics. Our model with 8.3B parameters can generate human-like responses as rated by various human evaluations in a single-turn dialog setting.